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Abstract
We introduce a set of rendering methods for fractals by the iterated deformation and
composition of images. These methods form the foundation for an effective and interactive
GPU-based fractal visualization environment.
The first part discusses such methods for the fractals generated by Iterated Function
Systems (IFS) and details a generalized escape time algorithm, that can be also used to
visualize Julia sets. These algorithms iteratively apply a single operation on a texture in
order to obtain the image of a fractal in convergence.
The second part is about Kleinian groups and their limit sets. A relation between the
representation of group elements as string over group generators and the limit set will
be derived. Utilizing this relation and assuming that suitable conditions hold, one can
use a deterministic finite automaton that decides how to deform a small set of textures
iteratively to obtain an image of the limit set.
Both parts end with the introduction of a measure based variation of these methods.

Zusammenfassung
In dieser Arbeit wird eine Klasse von Verfahren vorgestellt, welche durch die iterierte
Deformation und Überlagerung von Bildern eine Generierung von Fraktalen ermöglicht.
Diese Verfahren bieten Grundlage für effektive GPU-basierte interaktive Visualisierung-
sumgebungen für eine weite Klasse von Fraktalen.
Im ersten Teil der Arbeit werden Fraktale betrachtet, die durch iterierte Funktionensysteme
(IFS) erzeugt werden. Es werden verschiedene Ansätze entwickelt, mit denen diese Fraktale
durch die sukzessive Deformation und Überlagerung von Texturen erzeugt werden können.
Ein verallgemeiner Fluchtzeit-Algorithmus, welcher auch zur Visualisierung von Julia-
Mengen verwendet werden kann, wird in diesem Zusammenhang hergeleitet.
Im zweiten Teil wenden wir uns Kleinschen Gruppen und deren Limesmengen zu. Die
Repräsentation der Gruppenelemente als Zeichenketten über die Erzeuger der Gruppe
wird in Relation mit der Limesmenge gebracht. Diese Beziehung ermöglicht es unter
geeigneten Bedingungen mithilfe eines deterministisch endlichen Automatens mehrere
Texturen simultan zu deformieren, um schließlich in Konvergenz eine Darstellung der
Limesmenge einer Kleinschen Gruppen zu erhalten.
In beiden Teilen wird abschließend eine auf Maßen basierende Abwandlung eingeführt.
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Figure 1: Screenshots of Felix Woitzel’s demonstration.

1 Introduction
The seed for this thesis came from Felix Woitzel in 2011 when he published his Web-
GL Experiment Progressive Julia Fractal on the website Chrome Experiments: http:
//aaron.montag.info/ba/1.
Before continuing reading this thesis, the reader might check out Woitzel’s experiment1 in
order to get the spirit of this beautiful underlying idea, which was planted into our minds
last year.
So, what do we see in Woitzel’s demonstration? We observe how the Julia-set is progres-
sively built up by iteratively deforming and slightly lighting up a texture. The way the
texture is deformed is controlled by the position of the cursor, and if we change some
parameter, we can track how any change gradually propagates in the dynamic image seen.
In August 2013 Professor Jürgen Richter-Gebert, who had discovered Woitzel’s demonstra-
tion and already had developed some adaptions of it, told me about Woitzel’s impressing
idea and presented me with the opportunity to investigate this technique.
After playing around with this a little I got very enthusiastic and soon adapted the approach
to render different fractals. The aim of this thesis is to explain Woitzel’s approach and
show several variations in order to render a wide class of fractals.
In Sections 2 and 3 we investigate a very general class of fractals, namely limit sets of
hyperbolic iterated function systems (IFS), and modify Woitzel’s idea of feedback loops in
order to render those fractals. Then in Section 3.2, we examine escape time algorithms
which give some better attempt in rendering limit sets of hyperbolic IFSs, and enable us to
render a wider class of fractals, that includes Julia sets. In Section 3.3 a measure-theoretic
approach using feedback loops that yields very good results for IFSs is given.The concept
of limit sets of hyperbolic IFSs will be generalized in Section 3.4.
In Section 4 we will investigate Kleinian groups and their limit sets, which seems much
harder at first glance. We will prove a convergence theorem which is probably new. A
relative complex algorithm using this theorem is devolved. In the end of Section 4 we will
enhance this algorithm by another measure-theoretic approach.

1 WebGL for your browser is required in order to see Woitzel’s demonstration and several other
implementations in this thesis. For more information on installing WebGL visit http://get.webgl.org.

http://aaron.montag.info/ba/1
http://aaron.montag.info/ba/1
http://get.webgl.org
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Figure 2: Illustrations for various definitions

2 The Hausdorff Metric
We start by defining the metric space (H(X), h). It is the space that contains the fractals
covered in this thesis.

Notation 2.1. Let (X, d) be a metric space, A ⊂ X, ε ∈ R>0. Then

A+ ε := {x ∈ X | ∃a ∈ A : d(x, a) ≤ ε}

denotes the set A blown up by ε (see Figure 2a).

Definition 2.2 (The metric space (H(X), h)). Let (X, d) be a metric space. By

H(X) := {C ⊂ X | C 6= ∅ compact}

we denote the set of all nonempty compact sets in X. H(X) can be equipped with a metric
h as follows: Let x ∈ X and A,B ∈ H(X). We set (for illustrations see Figures 2b to 2d)

d(x,B) := inf
y∈B

d(x, y) = inf{ε ∈ R>0 : x ∈ B + ε}

to be to the distance from x to B and

d(A,B) := sup
x∈X

d(x,B) = sup
x∈X

inf
y∈B

d(x, y) = inf{ε ∈ R>0 : A ⊂ B + ε}

to the distance from the set A to the set B, or in other words, the maximal distance a
point of A has to be moved in order to lay in B. Note that d(A,B) = 0 is equivalent to
A ⊂ B. Therefore d(A,B) = d(B,A) does not hold in general, thus d does not form a
metric on H(X). However, the Hausdorff distance

h(A,B) := max{d(A,B), d(B,A)} = inf{ε ∈ R>0 : A ⊂ B + ε ∧B ⊂ A+ ε}

defines a metric on H(X). It is straightforward to check that it satisfies the axioms of a
metric. An explicit proof of the properties of a metric can be found in [Bar12]. If h(A,B)
is very small, then it is close to our intuition of A being almost the same set as B.
We say that a sequence (An)n∈N ⊂ H(X) of nonempty compact sets converges to the set
B ∈ H(X) if limn→∞ h(An, B) = 0 and write limn→∞An = B.
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Figure 3: The Sierpinski triangle or the Koch curve consists of three or four copies of itself,
respectively

3 Hyperbolic Iterated Function Systems
A striking property of fractals is their self-similarity. For instance, consider the two fractals
in Figure 3, which both can be built of smaller copies of themselves.
At first glance, their explicit mathematical definition does not seem to be very plain.
With the aid of hyperbolic iterated function systems it turns out that several fractals
are uniquely determined by their self-similarities. From this approach arises a method to
visualize those fractals interactively.

Definition 3.1 (hyperbolic iterated function system). The triple (X, d, {w1, . . . wn}) is
called a hyperbolic iterated function system (IFS) if the following conditions hold:

• (X, d) is a metric space.

• For every i ∈ [n] 2 the function wi : X → X is a contraction, that means there exists
a Lipschitz constant Li < 1 such that

∀x, y ∈ X : x 6= y ⇒ d(wi(x), wi(y)) < Li · d(x, y) .

In his book [Bar12] Michael Barnsley gives a mathematical beautiful argument3 to define
the limit set of an IFS, which we will echo here. Later, those limit sets will become our
fractals.

3.1 Convergence of the Iterated Hutchinson Operator
Definition 3.2 (Hutchinson operator). Given a hyperbolic IFS (X, d, {w1, . . . , wn}). The
so-called Hutchinson operator is defined as:

W : H(X)→ H(X)

C 7→
n⋃
i=0

wi(C)

2In this thesis we will use [n] to denote the set {1, . . . , n}
3John Hutchinson was the first to formalize the basic idea for this proof in [Hut79].
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Figure 4: Visualization of Lemma 3.3

The Hutchinson operator is well defined, because (Lipschitz-)continuous functions map
nonempty compact sets to nonempty compact sets (see [Kön03]) and the finite union of
sets of this nature also is nonempty and compact.

Lemma 3.3. Let (X, d, {w1, . . . , wn}) be a hyperbolic IFS. Then the associated Hutchinson
operator is a contraction on (H(X), h).

Proof. Define L := maxi∈[n] Li, where Li is the Lipschitz constant for wi. As it is the
maximum of a finite set of Lipschitz-constants less than 1, we also have L < 1. Let A,B ∈
H(X) and let us assume without loss of generality that h(W (A),W (B)) = d(W (A),W (B))
(Remember that we defined h(A,B) := max{d(A,B), d(B,A)}).
Then one can estimate: (illustrated in Figure 4)

h(W (A),W (B)) = d(W (A),W (B)) ≤ sup
i∈[n], a∈A

inf
j∈[n], b∈B

d(wi(a), wj(b))

≤ sup
i∈[n], a∈A

inf
b∈B

d(wi(a), wi(b)) ≤ sup
i∈[n],a∈A

inf
b∈B

Li · d(a, b)

≤ L · d(A,B) ≤ L · h(A,B)

Therefore W : H(X)→ H(X) is a contraction.

If (H(X), h) is a complete space, then we would be in the lucky situation to apply the
Banach fixed-point theorem and could obtain for each hyperbolic IFS a unique nonempty
compact set Λ such that W (Λ) = Λ.
Now there is a very handy theorem about the metric space (H(X), h), which gives us an
answer to our problem: The completness of X is carried over to H(X).

Theorem 3.4. Suppose (X, d) is a complete metric space. Then (H(X), h) is a complete
metric space. Furthermore if (An)n∈N ⊂ H(X) is a Cauchy sequence then its limit set can
be characterized as

lim
n→∞

An = {x ∈ X : there is a Cauchy sequence xn ∈ An that converges to x } ∈ H(X) .

Proof. See [Bar12, Chap 2., Thm 1.]

With this property of H(X) and Lemma 3.3 the Banach fixed-point theorem (see [Mat13])
leads us to:
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Corollary 3.5. Let (X, d) be a complete metric space, (X, d, {w1, . . . , wn}) a hyperbolic
IFS. Then there exists a unique nonempty compact limit set Λ ∈ H(X) such that W (Λ) = Λ
for the Hutchinson operator W . Furthermore, for every C ∈ H(X) holds

lim
n→∞

W n(C) = Λ

with respect to the Hausdorff distance h on H(X).

As from now we will always work on complete normed spaces.
So we can use this to characterize the famous Sierpinski triangle (see Figure 3).

Example 3.6 (The Sierpinski triangle). Consider the subsequent hyperbolic IFS on
X = C with the standard euclidean metric:

wi : C→ C ∀i ∈ {1, 2, 3}

w1 : z 7→ 1
2z

w2 : z 7→ 1
2z + 1

w3 : z 7→ 1
2z + 1

2 + sin(60◦) · i ,

where w1, w2, w3 contracts points to 0, 1 and 1
2 + sin(60◦) · i respectively. Then the

Sierpinski triangle with the vertices 0, 1, 1
2 + sin(60◦) · i ∈ C is a fixed point of W , because

W ( ) = w1( ) ∪ w2( ) ∪ w3( ) = ( ) ∪ ( ) ∪ ( ) = .

Corollary 3.5 now attests us that the Sierpinski triangle is the unique fixed set for
the hyperbolic IFS. And it allows us to start with an arbitrary nonempty compact set
C ∈ H(X), from which we can obtain any arbitrarily good approximation of the Sierpinski
by iterating the Hutchinson operator.

3.1.1 Texture Based Implementation of the Hutchinson Operator

From Corollary 3.5 immediately arises our first idea to render the limit set for a hyperbolic
IFS (X, d, {w1, . . . , wn}) on a two-dimensional space X.
We try to visually approach the limit set, for example the Sierpinski Triangle, as follows:

• Identify the two-dimensional space X with the pixels on the screen. Technically
speaking, this is impossible, because pixels are discrete, whilst the space X might be
continuous. So we will vaguely interpret some pixel as the point in X, which lies in
the center of the quadratic region that is covered by this pixel.

• Sets in H(X) are encoded by images on the screen. We will paint a pixel white if its
corresponding point in X belongs to the set, otherwise we will paint the pixel black.

• Our rendering process starts with an arbitrary frame, that shows a white shape on a
black background, which corresponds to some set C ∈ H(X).
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Figure 5: Screenshots of the set-based example implementation after 0, 1, 3, 9, 15 iterations
respectively.

• Then we render new frames by deforming the last frame as the Hutchinson operator
W would deform sets, i.e. we compute the overlay of the last frame transformed
by wi for i ∈ [n]. The new rendered frame is immediately shown to the user and
meanwhile this process is repeated based on this currently rendered frame. This
corresponds to iteratively applying W to C in order to compute W n(C).
We deliberately stay vague in the technical details, such as how to treat points in
the regions between the points in X which correspond to some pixel, because our
discrete screen will never match the “reality” of sets on a continuous metric space.
For instance, it might be a good guess to assume that a point of X belongs to the
pictured set, if and only if the next point that is represented by a pixel belongs to
the set.

• According to Corollary 3.5, after a while the user will see a picture which is arbitrarily
close to the limit set with respect the Hausdorff metric.

• The user might change parameters of the IFS at running time, for instance, the
rotation of the Sierpinski triangle. Regardless of which nonempty compact set was
shown, we will, according to Corollary 3.5, again approach an image of the new limit
set.

Some implementation of this approach to visualizing the Sierpinski triangle can be found
here: http://aaron.montag.info/ba/2.4
After rendering a few frames, in this implementation something that is very close to
the Sierpinski triangle becomes recognizable. But after another bunch of iterations, the
set unfortunately vanishes. One explanation for this behavior is given by the fact that
the Lebesgue measure of the Sierpinski triangle is zero, or to put it in other words, its
Hausdorff dimension is strictly less than 2. As the number of white pixels closely correlates
the Lebesgue measure of the pictured set, their number tends to 0. 5

We need some better approach in order to visualize the limit set. In the next section we
will develop a method that visually keeps track of all sets that occurred in the process of
approaching the limit set.

4 Press SPACE to set the current frame to some voluminous shape. You can stop the animation
by clicking on the frame. Then by pressing CTRL a single frame gets rendered. The mouse position
determines the rotation and scaling of the IFS.

5One can easily check that L(WnC) ≤
( 3

4
)n L(C) where L(·) denotes the two-dimensional Lebesgue

measure.

http://aaron.montag.info/ba/2
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3.2 The Escape Time Algorithm
3.2.1 Introduction – Classical Approach for Filled Julia Sets

One of the most common and traditional applications of the escape time algorithms lies in
rendering Julia or Mandelbrot sets.
We will shortly explain Julia sets. Given some function such as

Jc : C→ C where c ∈ C is a fixed parameter
z 7→ z2 + c .

Its filled Julia set is defined as

Fc := {z ∈ C | lim
n→∞

|Jnc (z)| 6=∞} .

The filled Julia set is the set of those points z ∈ C, for which, when iteratively applying
the function Jc, all values remain bounded. Or, to utter it differently, we are looking for
those points z in a dynamic system for which the sequence (Jnc (z))n∈N is not “attracted”
to ∞ ∈ Ĉ.
It can be observed that the augmentation of the absolute value

|Jc(z)| − |z| = |z2 + c| − |z| ≥ |z|2 − |z| − |c| =: p(|z|)

can be bounded from below by a quadratic polynomial p, which increases monotonously for
|z| ≥ R, where R = 1

2+
√

1
4 + |c| is its major root. Hence we can interpret R ∈ R as a bailout

radius, i.e. points z ∈ C whose absolute value is greater than this radius R are mapped by
Jc to points with even bigger absolute value, and even more, limn→∞ |Jnc (z)| =∞.
So, the standard approach to disprove that a given point z ∈ C belongs to the filled Julia
set is to just iterate Jc on z until |Jnc (z)| > R. The needed number of iterations until we
land outside of this bailout radius is called the escape time. On the other hand, if Jnc (z)
remains within the bailout radius for a large fixed number of iterations, e.g. 200, then it is
likely that z ∈ Fc.
In order to visualize the filled Julia set, it is rather common to output those escape times
for every point, instead of only showing the plain filled Julia set. We will generalize this
concept such that we can also apply it to hyperbolic IFSs.

3.2.2 Generalization of the Escape Time Algorithm

Definition 3.7 (point determined function, preservation of inclusion, positive invariance).
A function f : P(X)→ P(X) is called point determined if6

f(A) =
⋃
a∈A

f({a}) .

However, we do not require f({a}) to be a singleton. It also might be a collection of
several points, or it might be the empty set. Note that the point determined nature implies
preservation of inclusion, i.e. for every A,B ∈ P(X) with A ⊂ B we get f(A) ⊂ f(B).
We will call a set A ⊂ X positively invariant under f if

f(A) ⊂ A .
6The power set P(X) is defined as the set of all subsets of X.
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Example 3.8. The inverse Julia-map

J−1
c : P(C)→ P(C)

A 7→ {z ∈ C | Jc(z) ∈ A}

is obviously point determined. Furthermore J−1
c ({z}) = {±

√
z − c}.

The closed disk DR(0) = {z ∈ C | |z| ≤ R} is positively invariant under J−1
c where

R > 1
2 +

√
1
4 + |c| is some valid bailout radius: To see this take the contrapositive

of the bailout radius property z /∈ DR(0) ⇒ Jc(z) /∈ DR(0) which is equivalent to
z ∈ DR(0)⇒ J−1

c z ∈ DR(0).

We introduced the concept of positively invariant sets especially for the important case of
hyperbolic IFSs:

Example 3.9 (Hutchinson operator for a hyperbolic IFS). Let (X, d, {w1, . . . , wn}) be a
hyperbolic IFS. Clearly, the Hutchinson operator W : H(X)→ H(X), C 7→ ⋃n

i=0wi(C) is
point determined. Furthermore, let L be the maximal occurring Lipschitz constant of the
transformations wi (as defined in Lemma 3.3).
If we knew the limit set Λ of the IFS, then we could choose Λ + ε for any ε ∈ R>0 as a
positively invariant set, because by Lemma 3.3 h(W (Λ + ε),Λ) ≤ L · d(Λ + ε,Λ) = L · ε,
thus W (Λ + ε) ⊂ Λ + L · ε ⊂ Λ + ε.
There is another positively invariant set, that can be directly computed from the unique
fixed points Fix1, . . .Fixn of w1, . . . wn respectively. Their existence and uniqueness is
given by Banach’s contraction mapping theorem. Let 0 ∈ X and M = maxi∈[n] d(0,Fix i)
its maximal distance to the fixed points, then the disk DR(0) is positively invariant under
W if R ≥ M(1+L)

1−L . Just check that for any z ∈ DR(0), i ∈ [n]:

d(0, wiz) ≤ d(0, wiFix i) + d(wiFix i, wiz) ≤ d(0,Fix i) + L · d(Fix i, z)
≤ d(0,Fix i) + L · d(Fix i, 0) + L · d(0, z) ≤M(1 + L) + L ·R ≤ R ,

thus wiz ∈ DR(0). As z ∈ DR(0) and i ∈ N was arbitrary, we have shown that

W
(
DR(0)

)
⊂ DR(0) .

Lemma 3.10. Let f : P(X) → P(X) be point determined and A ∈ P(X) positively
invariant.
Then f iterated on A generates an infinite decreasing sequence of sets in P(X):

A ⊃ f(A) ⊃ f 2(A) ⊃ f 3(A) ⊃ . . .

and the set
Λ :=

⋂
n∈N

fn(A)

is a fixed point of f , namely f(Λ) = Λ.
Furthermore, if n ∈ N : fn(A) ∈ H(X) for all n ∈ N, then also Λ ∈ H(X) and the
sequence of sets fn(A) converges to Λ with respect to the Hausdorff metric.
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Figure 6: The sets A, fA, . . . f 4A, where A is some positively invariant disk. The corre-
sponding values of time (see Definition 3.12) are labeled in blue.

Proof. The decreasing subset-sequence property (see Figure 6): By induction we
show that fn+1A ⊂ fnA for all n ∈ N. The base case for n = 0, namely fA ⊂ A
holds due to our assumption that A is positively invariant under f . For the inductive
step let us assume that fnA ⊂ fn−1A. Then fn+1A ⊂ fnA follows immediately from
the preservation of inclusion for point determined functions.

f has Λ as a fixed point: A simple calculation yields

f(Λ) = f(
⋂
n∈N

fn(A)) =
⋂
n∈N

fn+1(A) =
⋂
n∈N

fn(A) = Λ .

The second last equality holds since fn(A) ⊂ A for all n ∈ N .

If fn(A) ∈ H(X), then Λ ∈ H(X): Now, let us assert that ∀n ∈ N : fn(A) ∈ H(X).
Then Λ is closed as an intersection of closed sets.
Λ is bounded as a subset of the compact set A.
Every collection of closed subsets of the compact set A satisfies the finite intersection
property, i.e: If the intersection over a finite number of closed sets in the collection is
nonempty, then the collection has a nonempty intersection itself (see [Bro13]). For the
decreasing sequence fnA of nonempty compact sets this implies that Λ := ⋂

n∈N f
n(A)

is nonempty.

Hausdorff convergence of fnA to Λ for n→∞: Note that h(fnA,Λ) = d(fnA,Λ)
since Λ ⊂ fnA, or equivalently, d(Λ, fnA) = 0. Now we will prove that

lim
n→∞

d(fnA,Λ) = lim
n→∞

inf{ε ∈ R>0 | fnA ⊂ Λ + ε} = 0 .
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Λ
ε

xnk

x fmA

Figure 7: Illustration of the con-
tradiction

Let us assume for contradiction that this conver-
gence does not hold. Then there is an ε ∈ R>0 and
a sequence xn ∈ fnA such that d(xn,Λ) ≥ ε for
all n ∈ N. As (xn)n∈N ⊂ A ∈ H(X) there is a se-
quence (nk)k∈N such that the subsequence (xnk

)k∈N
converges. Namely, set x := limk→∞ xnk

∈ A.
The decreasing subset-sequence property yields
that xn ∈ fmA ∀m ≥ n, which, in combina-
tion with the closed nature of the sets fmA,
implies that x = limk→∞ xnk

∈ fm(A) for all
m ∈ N, therefore x ∈ Λ. But on the other
hand, from the continuity of d(·,Λ) follows that
d(x,Λ) = limk→∞ d(xnk

,Λ) ≥ ε, which was a con-
tradiction to x ∈ Λ.

Example 3.11 (Filled Julia sets). Let us come back to Example 3.8. As it has been
discussed, J−1

c is point determined and DR(0) is positively invariant, where R ∈ R is a
valid bailout radius.
Since Jc is continuous, the preimages of closed sets are closed. Also the preimages of
bounded sets are bounded. By the fundamental theorem of algebra these preimages of
nonempty sets remain nonempty, thus finally J−1

c (C) ∈ H(C) for all C ∈ H(C).
Now Lemma 3.10 states that the sequence (J−nc DR(0))n∈N converges with respect the
Hausdorff-Metric to the set

Λ =
⋂
n∈N

J−nc DR(0) = {z ∈ C|∀n ∈ N : Jnc (z) ∈ DR(0)} = Fc .

What is about hyperbolic IFSs? The convergence in Lemma 3.10 does not give us anything
new. But we might use the fact that the generated sets of the sequence approaching the
unique limit set are contained in each other.
Now we are able to define a more generalized escape time, which also works for hyperbolic
IFSs.

Definition 3.12. Let f : P(X)→ P(X) be point determined and A ∈ P(X) be positively
invariant.
Then we define the (discrete) escape time of this system (f, A) as

time : X → N∞ := N ∪ {∞}
x 7→ min{n ∈ N | x /∈ fn(A)}

where we use the convention min∅ = ∞. time(x) counts the number of sets among
A, fA, f 2A, . . . that cover x. (For illustrations see Figures 6a and 6b).

The following lemma gives us a very handy recursive definition of time(x):

Lemma 3.13. time for the system (f, A) fulfills the following recursive description:
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time(x) =


0 if x /∈ A
1 if x ∈ A ∧ x /∈ f(A)
max{time(y) + 1 ∈ N∞ | y ∈ f−1({x})} otherwise

(1)

Note that in our Julia set example 3.8 the expression y ∈ f−1({x}) for f = J−1
c is equivalent

to the much more simple expression y = Jc(x) and x /∈ f(A) becomes Jc(x) /∈ A. Thus
the formula above gives us the standard approach to calculate the escape time.
For a hyperbolic IFS (X, d, {w1, . . . , wn}) the recursive expression for time with f = W =
(C 7→ ⋃n

i=0wi(C)) might be harder to compute if the cardinality of the set f−1({x}) =⋃n
i=1 w

−1
i {x} becomes infinite. But for several IFSs, for instance for the Sierpinski triangle

(see Example 3.6), each of the wis are injective and their inverse is easy to compute. Then
evaluating the maximum in (1) can be done in O(n) steps.

Proof of Lemma 3.13. We will verify Equation (1) for every x ∈ X.

1st case: time(x) ∈ {0, 1} Equation (1) obviously holds by definition of time.

2nd case: time(x) ∈ N≥2 So let time(x) = n ≥ 2. By definition of time and the decreas-
ing subset-sequence property follows that

∀k < n x ∈ fk(A) and (2)
∀k ≥ n x /∈ fk(A) (3)

In particular, x ∈ fn−1A, which also has a preimage y ∈ fn−2A such that y ∈
f−1({x}). Then by definition time(y) ≥ n− 1. So we have established

max{time(y) + 1 ∈ N∞ | y ∈ f−1({x})} ≥ n .

Let y ∈ f−1({x}). We will show by contradiction that time(y) < n. Suppose that
k := time(y) ≥ n. Then by definition y ∈ fk−1A. We conclude with x ∈ f({y})
that x ∈ fkA, which is a contradiction to (3) since k ≥ n. So we have proven the
other inequality

max{time(y) + 1 ∈ N∞ | y ∈ f−1({x})} ≤ n .

3rd case: time(x) =∞ Note that now we have

x ∈ Λ :=
⋂
n∈N

fn(A)

and f(Λ) = Λ by Lemma 3.10. So there is a y ∈ Λ such that x ∈ f({y}), or
equivalently y ∈ f−1({x}). From y ∈ Λ follows that time(y) =∞. Hence

max{time(y) + 1 ∈ N∞ | y ∈ f−1({x})} ≥ ∞+ 1 =∞ = time(x) ,

therefore (1) holds.
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This recursion relation gives us the foundation for our first algorithm.
Suppose we are given some arbitrary function time0 : X → N∞. Then one can define the
sequence (timet)t∈N of functions from X to N∞ as follows:

timet+1(x) =


0 if x /∈ A
1 if x ∈ A ∧ x /∈ f(A)
max{timet(y) + 1 ∈ N∞ | y ∈ f−1({x})} otherwise

(4)

Note that this equation is the same as (1) in Lemma 3.13, but we use timet in order to
compute timet+1.
By induction on t it turns out that

Corollary 3.14. For t ≥ 1 and x ∈ X holds

timet(x) = time(x)

provided that time(x) ≤ t or timet(x) ≤ t.

Proof by induction on t. By definition and the fact that time0(x) has no negative numbers
in its domain one has timet(x) = 0 iff time(x) = 0 and timet(x) = 1 iff time(x) = 1 for
every t ≥ 1. This also proves the base case for t = 1.
Assume for the inductive step t ≥ 2. Let timet(x) ≤ t and different from 0 or 1. Then
timet(x) = max{timet−1(y) + 1 ∈ N∞ | y ∈ f−1({x})} ≤ t. It follows from the inductive
assumption that timet−1(y) = time(y) for all y ∈ f−1({x}). Hence by Lemma 3.13
timet(x) = time(x). In the same manner one can show that time(x) ≤ t implies
timet(x) = time(x).

This corollary can be used for the subsequent GPU-based algorithm.
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3.2.3 Texture Based Implementation of the Escape Time Algorithm

The following algorithm visualizes the elements of the sequence (timet)t∈N as defined in
(4). To omit technical details, we will consider a single channel texture as a map, which
assigns each pixel some real number.
Algorithm 1: A method to calculate and visualize time progressively

1 Initialize two high resolution single channel textures CurrentTime and PreviousTime
of the same size.

2 while program is running do at most (roughly) 30 times a second
/* The rendering procedure for a single frame */

3 Get user input, such as the current mouse coordinate and specified parameters.
4 Based on this data calculate f and a corresponding positively invariant set A,

ensuring that A lies entirely in the region covered by the textures.
5 foreach pixel px on the texture CurrentTime do 7

6 x← point in X that corresponds the pixel px
7 if x ∈ A then
8 time← 1
9 foreach y ∈ f−1({x}) do

10 if y ∈ A then
/* Here some interpolation might be used. */

11 py ← pixel(coordinate) that corresponds the point y
12 newtime← PreviousTime(py) + 1
13 else
14 newtime← 1
15 end
16 time← max(time, newtime)
17 end
18 else
19 time← 0
20 end
21 CurrentTime(px)← time

22 end
23 Display the texture CurrentTime on the screen by, for instance, interpreting high

values as bright colors.
24 PreviousTime← CurrentTime
25 end

If the user updates a parameter, he can instantly observe how his modification gradually
propagates in the rendered image, while the structures that were rendered previously
remain visible. Corollary 3.14 guarantees us that after t ∈ N rendered frames all pixels
indicating an escape time which is less then or equal to t show correct escape time.

Implementation for the Filled Julia Set You can find some example implementation
for filled Julia sets at http://aaron.montag.info/ba/3.

7The code in this loop usually is processed in parallel by the pixel shader (GPU)

http://aaron.montag.info/ba/3
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Figure 8: Screenshots of the implementation for the filled Julia set, Sierpinski triangle and
Barnsley’s farn respectively.

Here the user is able to set the parameter c ∈ C interactively by the cursors position. Note
that the for-loop over the y ∈ f−1({x}) in line 9 can be replaced by y = Jc(x).
Basically this implementation copies Felix Woitzels idea, despite the fact that he uses
the entire screen as a positive invariant set instead of some disk representing the bailout
radius.

Implementation for Hyperbolic Iterated Function Systems An implementation
for the Sierpinski Triangle can be found here: http://aaron.montag.info/ba/4.
The position of the cursor again will be interpreted as some complex number c ∈ C. From
this we build the IFS on X = C:

wi : C→ C ∀i ∈ {1, 2, 3}

w1 : z 7→ 1
2z + c

w2 : z 7→ 1
2z + ei

2
3πc

w3 : z 7→ 1
2z + ei

4
3πc

So y ∈ f−1({x}) in line 9 becomes y ∈ {2x− c, 2x− ei 2
3πc, 2x− ei 4

3πc}.
Another hyperbolic IFS generates Barnsley’s farn, which is built of four contracting affine
transformations of itself: http://aaron.montag.info/ba/5. If you want to learn more
about this fractal, see [Bar12].

Fractals Generated by Circle Inversions A bunch of interesting fractals can be
built by a set of circle inversions. (For more details on circle inversions in general see, for
instance, [Nee11].)
Let C1, . . . , Cn be a set of circles in the plane with radii r1, . . . , rn and centers c1, . . . , cn,

http://aaron.montag.info/ba/4
http://aaron.montag.info/ba/5
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Figure 9: Screenshots of the implementations for fractals generated by circle inversions.

i.e. Ci := {z ∈ C : |z − ai| ≤ ri}. Then

γi : C \ Ci → Ci

z 7→ r2
i

z − ci
+ ci

for i ∈ [n] defines a map that inverts points outside of a circle Ci into the interior of
the circle and fixes the boundary. Now we can define f : H(C) → H(C) pointwise by
f({z}) := {γi(z) ∈ C : z ∈ C \ Ci}. The union of the circles A = ⋃n

i=1Ci is a positively
invariant set with respect to f , because the domain of every function γi was chosen in
such a way that γi maps points into Ci only.
Four mutually tangent circles in this setting form the Apollonian gasket as their corre-
sponding limit set: http://aaron.montag.info/ba/6.
In the Poincaré disk model of hyperbolic geometry circles that orthogonally intersect the
boundary of the disk correspond to lines. Circle inversion at those lines corresponds to
hyperbolic reflection. By properly choosing a set of such inversion circles, we can generate
a hyperbolic tessellation. Such a fractal was implemented at: http://aaron.montag.
info/ba/7.

3.2.4 Continuous Escape Time

When considering the images that were generated by our algorithm, then their impression
might be enhanced if the steps resulting from the discreteness of the time vanished.
This can be done by replacing the constant 1 in the x ∈ A∧ x /∈ f(A) case of Equation (4)
by a continuous function which maps into [0, 1] and interpolates the last step.
A formula for the special case where X is a normed space and A = DR(0) is given in
[HPS91]. In this manner the continuous time ctime : X → R∞ := R>0 ∪ {∞} can be

http://aaron.montag.info/ba/6
http://aaron.montag.info/ba/7
http://aaron.montag.info/ba/7
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Figure 10: Screenshots of the two implementations with continuous escape time.

defined recursively:

ctime(x) =


0 if ‖x‖ > R

max{ log(R/‖x‖)
log(‖y‖/‖x‖) ∈ R∞ : y ∈ f−1({x})} if ‖x‖ ≤ R ∧ x /∈ f(DR(0))

max{ctime(y) + 1 ∈ R∞ : y ∈ f−1({x})} otherwise
(5)

The reason for choosing log(R/‖x‖)
log(‖y‖/‖x‖) as interpolation is due to the fact that it is the natural

continuous extension for time of the one-transformation IFS W (x) = rx with 0 < r < 1,
where we have

time(x) = max{k ∈ N : W−k(x) = x

rk
∈ DR(0)} =

⌊
logr
‖x‖
R

⌋
+

=
⌊

log(R/‖x‖)
log(‖x

r
‖/‖x‖)

⌋
+
.

According to [HPS91] ctime is continuous on X \ Λ, provided that it is applied for a
hyperbolic IFSs.
Algorithm 1 can be adapted to visualize ctime by replacing line 8 (which is time← 1) by
time← 0, and line 14 (which is newtime← 1) by newtime← log(R/‖x‖)

log(‖y‖/‖x‖) .
With this continuous escape time, several visualizations are possible. Color palettes might
be used to display the wide spectrum of different escape times. One might calculate the
gradient of ctime, which gives a more complicated recursive formula (that also can be
implemented and progressively calculated by our texture based approach). The gradient
then can be used to introduce some lightning effects, which then turn some fractal in an
alpine landscape. Furthermore a height depended texture can be mapped on this “surface”,
which enables the user to distinguish very fine differences of escape times.
We have implemented two optical enhanced examples. One for the filled Julia set and
one for the Sierpinski triangle: http://aaron.montag.info/ba/8 and http://aaron.
montag.info/ba/9.

http://aaron.montag.info/ba/8
http://aaron.montag.info/ba/9
http://aaron.montag.info/ba/9
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Figure 11: Two fractals generated by analog feedback loops. (Using a webcam and a
mirror)

3.2.5 Analog Feedback Loops

Instead of iteratively deforming textures, we can use a analog simple design setup to obtain
fractals that are generated by escape time algorithms:
Probably almost everyone once has observed how an “infinite tunnel” becomes visible
if one points a camera at a screen which directly displays a live video recorded by the
camera. Today it is relatively easy to reproduce this effect. Several technical devices have
integrated webcams. For such devices a mirror can be used for moving the screen in the
field of view of the camera.
Instead of directly showing the currently recorded image we deform the image on the
screen in the sense of Equation (4). For instance, in order to “render” the Sierpinski
triangle, we show the recorded image three times simultaneously next to each other, such
that each mirrored live record appears optically scaled-down by the factor 2 (compare by
Example 3.6). After some time in this setting, the Sierpinski triangle becomes visible (as
in Figure 11). An demonstration that accesses the webcam and deformes the recorded
video as just described can be found at http://aaron.montag.info/ba/10.
A mathematical description can be given in the manner of Definition 3.12: We interpret
the screen as a positively invariant set A for a function f which corresponds to the effect
of the projective distortion and the artificial deformations on the screen. A pixel on the
screen might display a part of the depictured screen. This self-capturing process iterates
until something next to the screen is displayed. The number of passages for an pixel x in
this loop corresponds to the value of time(x). Due to physical reasons, the color slightly
changes in each passage. Some LCD displays for instance, cause a slight bluish fog during
this process. If this natural change in color is not sufficient then one can brighten up the
displayed colors on the screen by hand.
We can use this didactic process for any escape time algorithm. In particular it can be
used to render Julia sets. The idea is that we color a pixel z ∈ C on the screen by the
color of the pixel z2 of the captured image of the camera. Under suitable conditions, the
projective distortion caused by the relative position of the camera capturing the screen is
(almost) euclidean and therefore corresponds to a function z 7→ αz + β for some α, β ∈ C.

http://aaron.montag.info/ba/10
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In combination we get f−1 = (z 7→ αz + β) ◦ (z 7→ z2) = (z 7→ αz2 + β). Using the
substitution S = z 7→ αz it turns out that f−1 = S−1 ◦ Jαβ ◦ S. Therefore a Julia set
becomes visible. The user can regulate its parameter c = αβ by adjusting the camera. An
interactive example is implemented at http://aaron.montag.info/ba/11. For results
compare Figure 11.

3.3 Hyperbolic Iterated Function Systems with Probabilities
Aside using an escape time algorithm, there is another approach to visualize the limit set
of a hyperbolic IFS using feedback loops.With our first approach in Section 3.1.1, when we
displayed and deformed sets as black-white images, we had some problem with vanishing
fractals. One might consider solving this problem by constantly brightening up non-black
pixels. If some set gets scaled down, then the pixels covering this set could be enlightened
with the corresponding scaling factor, in order to keep the amount of used “brightness ink”
as an invariant.
We did this in order to solve the problem with the vanishing images and obtained very
good results. Under the hood, this approach gives some precise mathematics, which was
developed first by Hutchinson in [Hut79].
The idea is to work with a sequence of Borel regular measures instead of a sequence of
sets. The support of those measures acts in the same way as the sets generated by the
Hutchinson operator. Furthermore, we require that the measures always must assign the
constant value to the entire space, therefore they will not vanish. The brightness of pixels
on the screen will indicate the measure which is assigned to the filled square covered by
the pixel.
In Section 3.1 we deformed a set C ∈ H(X) by simply taking the image T (C) for a
transformation T : X → X . How can we deform a measure?

Definition 3.15 (M(X), M1(X), Tµ, hyperbolic IFS with probabilities, Markov Op-
erator). Let (X, d) be a metric space, M(X) the set of Borel regular measures on X,
µ ∈M(X) a measure and T : X → X a measurable function. Then we define the measure
Tµ ∈M(X) as

(Tµ)(A) := µ(T−1(A))

for every A in the σ-algebra over X.
For a given hyperbolic IFS (X, d, {w1, . . . , wn}), we attach to each contraction wi a
probability pi ∈ [0, 1] such that ∑N

i=1 pi = 1 and yield the hyperbolic IFS with probabilities
(X, d, {(w1, p1), . . . , (wn, pn)}). 8 This IFS with probabilities operates on M1(X) = {µ ∈
M(X) : µ(X) = 1}, the space of normalized Borel measures on X, as follows: The Markov
operator M associated to the IFS with probabilities is the function

M :M1(X)→M1(X)

µ 7→
N∑
i=1

piTµ .

8The number pi corresponds to the probability for choosing the contraction wi in the random iteration
algorithm. We are not going to cover this algorithm here. For more information, see [Bar12].

http://aaron.montag.info/ba/11


3.3 Hyperbolic Iterated Function Systems with Probabilities 19

Similarly as for the Hutchinson operator, that is a contraction on (H(X), h), the Markov
operator forms a contraction on the space (M1(X), dH) equipped with the Hutchinson
metric that is defined as

dH(µ, ν) := sup{
∫
X
f dµ−

∫
X
f dν | f : X → R, |f(x)− f(y)| ≤ d(x, y)∀x, y ∈ X}

for µ, ν ∈M1(X). Furthermore if (X, d) is compact, then (M1(X), dH) is compact as well.
For a proof of those statements we refer to [Bar12, Chpt. 9]. Accepting this, Banachs
fixed-point theorem immediately gives us the following theorem:

Theorem 3.16. Let (X, d) be a compact space and (X, d, {(w1, p1), . . . , (wn, pn)}) a hy-
perbolic IFS with probabilities and the associated Markov operator M :M1(X)→M1(X).
Then there exists a unique invariant measure ν ∈M1(X) such that

M(ν) = ν

and furthermore for every µ ∈M1(X)

lim
n→∞

Mn(µ) = ν

holds with respect to the Hutchinson distance dH on M1(X).

According to [Hut79, Thm. 4. (ii)] the support of the invariant measure ν equals to the
limit set Λ associated to the IFS.

3.3.1 Texture Based Implementation of the Probability Based Approach

We will again use textures to store data. Our aim will be to utilize a texture in order
to visualize a normalized Borel measure. Furthermore, we are interested in a method to
deform a texture in such a way that corresponds roughly the iterated application of the
Markov operator to the corresponding measure.
For practical reasons we will assume that X is a rectangular compact subset of R2 (or
analogously, for C ∼= R2).
How can we display Borel measures on X on the screen? Let ε ∈ R>0 be some small
number that represents the width of a single pixel. For every x ∈ {(aε, bε) | a, b ∈ Z} ∩X
we associate the quadratic pixel

Px =
[
x1 −

ε

2 , x1 + ε

2

]
×
[
x2 −

ε

2 , x2 + ε

2

]
⊂ R2 .

For a measure µ ∈M(X) and a set A in the σ-algebra of X we define the density

Dµ(A) := µ(A)
L(A)

where L(·) denotes the two dimensional Lebesgue measure. We will use the brightness of
a pixel Px to indicate the density Dµ(Px).
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Figure 12: Screenshots of the two implementations using the measure based approach.

What should happen on the screen, if we apply some transformation T to a displayed
measure µ ∈M(X)? For simplicity, we will assume that T is a diffeomorphism. Ideally,
the value of the pixel Px should attain the new value DTµ(Px). By the definition of Tµ
and integration by substitution (See [Els04, “Transformationsformel”]) we yield:

DTµ(Px) = µ(T−1(Px))
L(Px)

= µ(T−1(Px))
L(T−1(Px))

L(T−1(Px))
L(Px)

= Dµ(T−1(Px))
∫
Px
| detDT−1| dL
L(Px)

The expression Dµ(T−1(Px)) corresponds to the density of µ over the region T−1(Px). This
value can be approached by taking the average brightness of the corresponding pixels. In
OpenGL a method to query such averaged values from a texture is provided by anisotropic
texture filtering in combination with automatic generated mipmap textures. A less good
approximation of Dµ(T−1(Px)) is attained by taking the lightness of the pixel that covers
the point T−1(x). Assuming that DT is continuous and ε sufficient small, the second
factor

∫
Px
| detDT−1| dL
L(Px) can be approached by detDT−1(x).

Now, suppose that (X, d, {(w1, p1), . . . , (wn, pn)}) is a hyperbolic IFS with probabilities
where every contraction wi is a diffeomorphism. Then the Markov operator of a measure
encoded by a texture is the linear combination of transformations of the measure. It is
straightforward to approximate the new resulting texture by the formula above.
The following algorithm, which starts with a uniform distribution µ, will approach the
invariant measure ν of the associated Markov operator by Theorem 3.16.
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Algorithm 2: A method to calculate and visualize the invariant measure ν progressively
1 Initialize two high resolution single channel textures CurrentD and PreviousD of the

same size.
2 foreach pixel Px on the texture CurrentD do
3 CurrentD(Px)← c > 0 /* uniform distribution up to a scalar multiple

*/
4 end
5 while program is running do at most (roughly) 30 times a second

/* The rendering procedure for a single frame */
6 Get user input, such as the current mouse coordinate and specified parameters.
7 Based on this data calculate the functions w−1

i and Dw−1
i and the probabilities pi.

8 foreach pixel Px on the texture CurrentD do
9 x← point in X that corresponds to the pixel Px

10 d← 0
11 for i← 1, 2, . . . , n do /* Calculate density of

∑n
i=1 piwi(µ) */

12 foreach y ∈ w−1
i (x) do

13 py ← pixel(coordinate) that corresponds to the point y
14 d← d+ pi · | detDw−1

i (x)| · PreviousD(py)
15 end
16 end
17 CurrentD(Px)← d

18 end
19 Display the texture CurrentD on the screen by, for instance, interpreting high

values as bright colors.
20 PreviousD← CurrentD
21 end

Here again, the user might change some parameters at running time. According to
Theorem 3.16 we will eventually see an image that is arbitrarily close to the new invariant
measure.
An example implementation for the Sierpinski-triangle with the probabilities p1 = 0.2, p2 =
0.3, p3 = 0.5 can be found here: http://aaron.montag.info/ba/12.An implementation
for Barnsleys farn, which is described in [Bar12], can be found here: http://aaron.
montag.info/ba/13.

3.4 Groups and Monoids as Languages
In this section we will introduce some notation which is useful in order to generalize
our concept of limit sets and will finally lead to another perception of the limit set for
hyperbolic IFS.
Let (X, d, {w1, . . . , wn}) be a hyperbolic IFS. Then the set of all possible finite sequences
of concatenations of those transformations w1, . . . , wn plus the identity-transformation
ι := idX forms a monoid (M, ◦) which acts on X.9 Elements of a finitely generated monoid
might be described with strings, which we will formalize in the successive definition:

9 By the phrase (M, ◦) acts on X we mean that each element of M can be considered as a map from

http://aaron.montag.info/ba/12
http://aaron.montag.info/ba/13
http://aaron.montag.info/ba/13
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Definition 3.17 ( adapted from [EPC+92]). Let M be a monoid, Σ ⊂M a finite subset
of M . With Σ∗ we denote the set of all strings over the alphabet Σ where ε ∈ Σ∗ denotes
the empty string. (Σ∗,+) itself forms a monoid with ε as neutral element and where + is
the concatenation of strings. In future we will write vw instead of v + w, where v, w ∈ Σ∗.
|w| stands for the length of the word w ∈ Σ∗.
Σn = {w ∈ Σ∗ : |w| = n} denotes the set of all strings over Σ of length n.
By interpreting concatenation in Σ∗ as multiplication in M the map π : Σ∗ →M forms a
monoid homomorphism. In this sense we are constrained to set π(ε) = ι.
Now, we say Σ generates the monoid M as a semigroup, or Σ is the set of semigroup
generators for M , iff the interpretation map π : Σ∗ →M is surjective.10

All the definitions can also be applied for a group G as well, because a group is, in some
sense nothing but kind of a special monoid. Note that here the term Σ ⊂ G generates G
as a semigroup differs from the standard term Σ ⊂ G generates G, which is equivalent to
the term Σ ∪ Σ−1 generates G as a semigroup.

Example 3.18. The group (Z,+) is generated as a semigroup by the alphabet Σ =
{+1, -1} ⊂ Z. Therefore +1+1-1 ∈ Σ∗ and |+1+1-1| = 3 and π(+1+1-1) = 1+1−1 = 1 ∈ Z.

Example 3.19. Σ = {w1, . . . , wn} is the set of semigroup generates for the monoid
associated to the IFS (X, d, {w1, . . . , wn}).

3.5 An Alternative Description of the Limit Set
So far we encountered the term limit set only for hyperbolic Iterated Function Systems.
The goal of this section is to understand of what the limit set explicitly consists of. In the
next section we will use these insights to generalize this concept in order to investigate the
limit sets of Kleinian Groups.
We will start with a proposition that uses the definitions we introduced in the last section.

Proposition 3.20. Let M denote the monoid associated to the IFS (X, d, {w1, . . . , wn})
and Σ = {w1, . . . , wn}. Then one might interpret the iterated Hutchinson-operator as
follows:

W n(C) =
⋃

w∈Σn

π(w)(C)

Proof by induction on n. For the base case n = 0, the union is over the empty string ε,
which correspondents to the identity transformation. This is consistent with W 0(C) = C.
For the inductive step we will assume that W n(C) = ⋃

w∈Σn π(w)(C) and now apply the

X to itself where the following conditions hold for all x ∈ X, a, b ∈M :

ι(x) = x

a(b(x)) = (a ◦ b)(x)

10Actually the term Σ generates M as monoid would be more suitable, but we will comply with the
conventional notation.
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Hutchinson operator W on W n(C). Then with the homomorphism property of π it turns
out after some rearrangement, that W n+1(C) can be written in the same manner:

W n+1(C) = W (W n(C)) =
n⋃
i=1

wi
⋃

w∈Σn

π(w)(C) =
⋃
σ∈Σ

π(σ)
⋃

w∈Σn

π(w)(C)

=
⋃
σ∈Σ

⋃
w∈Σn

π(σw)(C) =
⋃

w∈Σn+1

π(w)(C)

Now we have got the formal machinery to give an alternative description of the limit set Λ
for a hyperbolic IFS. In order to do so, we will take a closer look at the orbits that were
induced by the action of M .

Theorem 3.21. Let (X, d) be a complete metric space that contains at least two points,
(X, d, {w1, . . . , wn}) a hyperbolic IFS of injective transformations with the associated
monoid M . Then the limit set Λ of (X, d, {w1, . . . , wn}) ( as it is defined in Corollary 3.5
by iterating the Hutchinson operator on an arbitrary non-empty compact set) equals to

Λ(M) := {z ∈ X : there exists x ∈ X and a sequence (mn)n∈N of pairwise
disjoint monoid elements in M such that lim

n→∞
mnx = z} ,

which contains the accumulation points of the occurring orbits of M acting on X.

We need to prove a technical lemma first.

Lemma 3.22. Suppose we are in the setting of Theorem 3.21. Let Σ = {w1, . . . , wn},
vn ∈ Σn a sequence of words of increasing lengths. Then there is a subsequence (π(vnk

))k∈N
of pairwise disjoint transformations.

Proof. Let x, y ∈ X be two distinct points. Thus d(x, y) > 0. Since M consists of injective
transformations only (it is generated by injective transformations), we conclude that
π(vn)x 6= π(vn)y for every n, or equivalently, in terms of the metric:

∀n ∈ N : d(π(vn)x, π(vn)y) > 0

On the other hand, vn ∈ Σn gives us d(π(vn)x, π(vn)y) < Lnd(x, y), where L :=
maxi∈[n] Li < 1 and the Lis are the Lipschitz constants for wi respectively. Therefore
limn→∞ d(π(vn)x, π(vn)y) = 0.
Consequently, (d(π(vn)x, π(vn)y))n∈N is a zero sequence of non vanishing values. Hence
there must be a subsequence (nk)k∈N such that the values of the sequence (d(π(vnk

)x, π(vnk
)y))k∈N

are all different. Therefore also the sequence (π(vnk
))k∈N consists of pairwise disjoint trans-

formations.

Proof of Theorem 3.21. Let Σ = {w1, . . . , wn} ⊂M an alphabet, which generates M as a
semigroup. For this proof we will use extensively the explicit characterization of limits of
convergent sequences in H(X) (see Theorem 3.4).
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Assert that z ∈ Λ. Our job is to show that z ∈ Λ(M). Let x ∈ X be some arbitrary point.
Obviously {x} ∈ H(X) and henceforth by Corollary 3.5 limn→∞W

n{x} = Λ. Now the
characterization of limits in Theorem 3.4 gives us the following equivalence

z ∈ Λ⇔ z ∈ lim
n→∞

W n{x}

⇔ there is a convergent sequence zn ∈ W n{x} with lim
n→∞

zn = z

⇔ there is a sequence of words vn ∈ Σn such that lim
n→∞

π(vn)(x) = z

The just proven Lemma 3.22 allows us to take some subsequence vnk
∈ Σnk from (vn)n∈N for

which the interpretations π(vnk
) ∈M are pairwise distinct. The limit limk→∞ π(vnk

)(x) = z
is preserved, therefore with the starting point x and the sequence π(vnk

) we fulfill the
requirement for z ∈ Λ(M).
For the other implication let us assume z ∈ Λ(M), i.e. let x ∈ X and (mn)n∈N be a sequence
of pairwise disjoint elements in M with limn→∞mnx = z. Now choose vn ∈ π−1(mn) as
some sequence of words representing those transformations. Since the monoid elements
mn are pairwise disjoint, whilst the sets Σn are finite for every n ∈ N, it turns out that
limn→∞ |vn| =∞. This implies

lim
n→∞

W |vn|{x} = lim
n→∞

W n{x} = Λ .

The explicit characterization of the Hausdorff limit limn→∞W
|vn|{x} given in Theorem 3.4

tells us that one can reason

z = lim
n→∞

mnx ∈ lim
n→∞

W |vn|{x} = Λ

from mnx ∈ W |vn|{x}.

Hereby we have given some alternative description of the limit set of non-trivial hyperbolic
IFS with injective transformations: It also is the set of accumulation points of the orbits
of M .
The requirement of non-injectivity was asserted for this characterization, in order to
exclude any IFS that induces finite monids, for which the definition Λ(M) always gives
us the empty set. For instance, consider the IFS (X, d, {w1}) with the non-injective map
w1 : X → X, x 7→ z mapping everything to some z ∈ X. This IFS generated the finite
monoid M = {ι, w1}, hence Λ(M) = ∅, but Λ = limn→∞W

n({z}) = {z}.
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4 Kleinian Groups
In the last chapter we have studied hyperbolic Iterated Function Systems, where we
demanded every transformation to be a contraction.
We will investigate groups of Möbius transformations, that act on Ĉ, and give an algorithm
to draw corresponding limit sets by converging images. This will be harder than it was for
IFSs because taking the Hutchinson operator W = C 7→ ⋃

σ∈Σ π(σ)C on an alphabet of
transformations and semigroup generators Σ for a group G will not work anymore.

4.1 Mathematical Fundamentals of Kleinian Groups
We will first define the domain Möbius transformations are acting on, the extended complex
numbers, or the Riemann sphere:

Definition 4.1 (The extended complex numbers Ĉ and their metric d). We set

Ĉ = C ∪ {∞}

and extend the arithmetic of C by setting z +∞ =∞, z · ∞ =∞, z
∞ = 0 and z

0 =∞ for
all z ∈ C.

x

y
σ−1(x)

σ−1(y)

σ−1(∞)

Ĉ
S2

d(x, y)

Figure 13: The Riemann sphere and its stereographic projection to Ĉ (Actually the finite
plane + a single point at infinity). The distance d(x, y) for x, y ∈ Ĉ is delineated in teal.

In the manner of [HH99] we equip Ĉ with a distance function in order to make it a metric
space. Using stereographic projection, we pull back the metric from the Riemann sphere
S2 = {(z, y) ∈ C × R | |z| + y2 = 1} . The stereographic projection σ : S2 → Ĉ is a
bijective map with

σ(z, y) =


z

1−y if (z, y) 6= (0, 1)
∞ if (z, y) = (0, 1)

σ−1(z) =


(

2z
|z|2+1 ,

|z|2−1
|z|2+1

)
if z ∈ C

(0, 1) if z =∞

For x, y ∈ Ĉ we set
d(x, y) := |σ−1(x)− σ−1(y)| .
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Let (an)n∈N and (bn)n∈N sequences in C. Clearly, if limn→∞ |an−bn| = 0, then limn→∞ d(an, bn) =
0. On the other hand, if limn→∞ |zn| =∞, then limn→∞ d(zn,∞) = 0. In particular, our
term of convergence with respect to the metric induced by the standard euclidean norm
on C is extended by the convergence with respect to d.

Remark 4.2. Every sequence (zn)n∈N in Ĉ has a convergent subsequence. In other words,
every closed set in Ĉ is sequentially compact.

Proof. Without loss of generality we may assume that the sequence has no member zn s.t.
zn =∞. If there are infinitely members becoming ∞ then ∞ is an accumulation point.
Otherwise we can consider the sequence after a finite number of occurring ∞s. Suppose
(zn)n∈N is bounded, then by the Bolzano-Weierstraß theorem it has an accumulation point.
If it is not bounded then it has a subsequence (znk

)k∈N such that limk→∞ |znk
| =∞, which

is by definition equivalent to limk→∞ znk
=∞.

Definition 4.3 (Möbius Transformations). Let γ =
(
a b
c d

)
∈ SL(2,C), i.e. det γ =

ac− bd = 1. Then the function Mγ : Ĉ→ Ĉ with

Mγ(z) = az + b

cz + d

and Mγ(∞) = a
c

is called a Möbius Transformation with the associated matrix γ.

Remark 4.4. With the notation as above, we have Mγ = Mαγ for any α ∈ C×, as the
numerator and denumerator can be reduced by the same number. So if γ is only a regular
matrix in GL(2,C), i.e. det γ = ac−bd 6= 0, then the function Mγ can also be considered as
a Möbius transformation, with the associated matrix 1√

det γγ ∈ SL(2,C). In the successive
calculations we always assume that det γ = ac− bd = 1.

Lemma 4.5. Möbius transformations act biholomorphic on Ĉ. Furthermore, for γ1, γ2 ∈

GL(2,C) we have the property Mγ1◦Mγ2 = Mγ1·γ2. For I :=
(

1 0
0 1

)
one obtains MI = id|Ĉ.

If γ =
(
a b
c d

)
∈ SL(2,C) then we have M−1

γ = Mγ−1 with γ−1 =
(
d −b
−c a

)
. In particular,

Möbius transformations form a subgroup of Aut(Ĉ).

Proof. An elegant proof using homogeneous coordinates is given in [RG11, Ch. 7]. Their
biholomorphic nature is proven in [HH99]. It is worth to remark, that every biholomorphic
automorphism on Ĉ is a Möbius transformation.

From now on Trγ = a + d denotes the trace for the matrix γ = (a b|c d) ∈ SL(2,C).
With the term “Mγ is conjugated to the Möbius transformation S” we mean that there is
another Möbius transformation T such that Mγ = T ◦ S ◦ T−1. Note that the trace of the
representing matrices remains invariant under conjugation.

Definition-Lemma 4.6 (Classification of Möbius Transformations). Any Möbius trans-
formation Mγ different from the identity can be classified as



4.1 Mathematical Fundamentals of Kleinian Groups 27

parabolic if Tr γ ∈ {−2, 2}. It has one fixed point and is conjugated to the Möbius
transformation z 7→ z + a with a ∈ C \ {0}.

elliptic if Tr γ ∈ (−2, 2). It has two fixed points and it is conjugated to the Möbius
transformation z 7→ kz with k ∈ C, |k| = 1.

loxodromic if Tr γ ∈ C \ [−2, 2]. It has an attracting and repulsive fixed point, where
every point in Ĉ but the repulsive fixed point is attracted to the attracting fixed
point by iterating Mγ. It is conjugate to the Möbius transformation z 7→ kz with
k ∈ C \ R, |k| > 1. Furthermore, we call Mγ hyperbolic, if Tr γ ∈ R \ [−2, 2]. It is
a special loxodromic transformation. It is conjugate to the Möbius transformation
z 7→ kz with k ∈ R, k > 1.

Proof. See [MSW02] or consider the 2× 2 Jordan normal form of γ.

By Lemma 4.5, any group of Möbius transformations operates on Ĉ in a natural way. The
accumulation points of the occurring orbits are an interesting object to study.
We will basically use the same property as we have developed for hyperbolic IFSs in
Theorem 3.21 in order to define the limit set of a group of Möbius transformations:

Definition 4.7 (Limit set, Kleinian group). Let G be a group of Möbius transformations.
The limit set

Λ(G) := {z ∈ Ĉ | there exists w ∈ Ĉ and a sequence (gn)n∈N of pairwise
disjoint group elements in G such that lim

n→∞
gnw = z}

of G is defined as the set of all points in Ĉ where the orbit of some w ∈ Ĉ has an
accumulation point. The set Ω(G) = Ĉ \ Λ(G) is called domain of discontinuity or the
ordinary set. We will call points in Ω(G) ordinary.
Those groups G for which Ω(G) is non-empty are called Kleinian groups.
With Γ(G) = {γ ∈ SL(2,C) |Mγ ∈ G} we will denote the set of the associated matrices
to G.

Note that by definition finite groups G have an empty limit set Λ(G). A Kleinian group
that is generated by a single loxodromic or parabolic Möbius transformation has its
fixed point(s) as limit set (Compare with classification in Definition-Lemma 4.6). A two
generator Kleinian group can possibly have rich geometric structures as limit set. An
example is depicted in Figure 14. Here we have chosen the two generators by grandma’s
recipe from [MSW02] with the parameters ta = 1.9 + 0.1i and tb = 2.0. 11

Our main goal is to develop an algorithm that can, given a finitely generated group G of
Möbius transformations, produce a sequence of compact sets that converges with respect
to the Hausdorff metric to the limit set Λ(G).
First we prove some properties which give some insights into Kleinian groups and are
needed afterwards for our goal. Those ideas and their proofs came from or were adapted
from [Leh64, Ch. III]

11 Given two complex parameters ta and tb, grandma’s recipe computes two Möbius transformations
a and b with the traces ta and tb respectively. They are chosen in such a way that the commutator
abAB has trace −2 (A and B are the inverse transformations of a and b). Therefore abAB is parabolic.
Furthermore abAB has the single fixed point 1 and aBAb has the single fixed point −1.



28 4 KLEINIAN GROUPS

Ω(G)

Λ(G)

Figure 14: The limit set for a Kleinian group generated by two Möbius transformations.

What happens if we apply some Möbius transformation to the limit set/ordinary set of a
Kleinian group? It turns out that the transformed set is the limit set/ordinary set of the
group conjugated by the transformation:

Proposition 4.8 (Conjugation of Kleinian Groups, Invariance of Λ(G) and Ω(G) under
operations of G). Let G be a Kleinian group, T : Ĉ → Ĉ some Möbius transformation.
Then

TΛ(G) = Λ(TGT−1) and TΩ(G) = Ω(TGT−1) . (6)

In particular, if T ∈ G, then

TΛ(G) = Λ(G) and TΩ(G) = Ω(G) . (7)

Proof. First we show that TΛ(G) ⊂ Λ(TGT−1):
Suppose z ∈ TΛ(G), or in other words, there exists w ∈ Ĉ and a sequence (gn)n∈N of
pairwise disjoint group elements in G such that T (limn→∞ gnw) = z. From the continuity of
T on Ĉ follows z = limn→∞ T (gnw) = limn→∞(TgnT−1)(Tw). The sequence (TgnT−1)n∈N
remains consisting of distinct elements. Therefore z ∈ Λ(TGT−1).
The just proven inclusion is true for any Möbius transformation and any group of Möbius
transformations, in particular for the transformation T−1 and the group TGT−1. Hence
T−1Λ(TGT−1) ⊂ Λ (T−1(TGT−1)T ) = Λ(G). Since T is bijective, we apply it to both
sides and get Λ(TGT−1) ⊂ TΛ(G). So the first equality in (6) is proven.
The equality for the ordinary set in (6) immediately follows from the bijective nature of T :

TΩ(G) = T (Ĉ \ Λ(G)) = T (Ĉ) \ TΛ(G) = Ĉ \ Λ(TGT−1) = Ω(TGT−1)

G is a normal subgroup of G itself. In other words, G = TGT−1 for any T ∈ G. This
implies Equation (7) from Equation (6).
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Another property, we want to show, is the discreteness of a Kleinian group.

Definition 4.9 (discrete set). Let (X, d) be a metric space. A set S ⊂ X is called discrete
if there is no s ∈ S such that there is a sequence (sn)n∈N of pairwise disjoint elements in S
converging to s, or in other words, every point of S is isolated.

In order to speak of converging matrices in SL(2,C), we will identify the C2×2 canonically
with the C4 equipped with the euclidean metric. Then a sequence of matrices converges if
and only if every component converges.

Lemma 4.10. The set of the associated matrices Γ(G) = {γ ∈ SL(2,C) |Mγ ∈ G} of the
transformations of a Kleinian group G has no accumulation points in C2×2.

Proof. Assume that there is a sequence (γn)n∈N of pairwise disjoint matrices with γn =(
an bn
cn dn

)
∈ Γ(G) converging to γ =

(
a b
c d

)
∈ C2×2. As a consequence

1 = lim
n→∞

det
(
an bn
cn dn

)
= lim

n→∞
andn − bncn = ad− bc = det

(
a b
c d

)

holds. Therefore γ is invertible and

lim
n→∞

γn · γ−1 = lim
n→∞

(
an bn
cn dn

)
·
(
d −b
−c a

)
=
(

1 0
0 1

)
.

Thus for every z ∈ Ĉ we obtain

lim
n→∞

Mγn(Mγ−1z) = lim
n→∞

Mγn·γ−1z = z ,

thus z ∈ Λ(G). The last equality follows from the continuity of the operations as
multiplication, summation and division, which were used to built Möbius transformations.
The result Λ(G) = Ĉ, or Ω(G) = Ĉ \ Λ(G) = ∅, contradicts the property of G being
Kleinian.

From Lemma 4.10 directly follows:

Corollary 4.11. Γ(G) is discrete.

The next two statements require ∞ ∈ Ω(G), which makes calculations very handy. The
idea for using this assumption came from [Leh64]. In fact, this requirement is not a real
restriction: As we will show, given some Kleinian group G with w ∈ Ω(G) 6= ∅, then one
can conjugate all the transformations in G by some Möbius transformation in order to
move Λ(G) away from ∞.

Lemma 4.12. Let G be a Kleinian Group with ∞ ∈ Ω(G). Consider a sequence (gn)n∈N
of pairwise disjoint elements of G. Let γn =

(
an bn
cn dn

)
∈ SL(2,C) such that Mγn = gn.

Then
lim
n→∞

|cn| =∞ .
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Proof. Our goal is to derive a contradiction by showing that the matrices accumulate at
some point.
Assume that |cn| does not converge to ∞. Then the bounded sequence (cn)n∈N has a
convergent subsequence. By taking the subsequence we assume without loss of generality
that limn→∞ cn = c ∈ C.
Because of the property ∞ 6∈ Λ(G) we conclude that the three sequences

gn(∞) = an
cn

g−1
n (∞) = dn

−cn
gn(0) = bn

dn

in Ĉ have no subsequence converging to ∞.
Thus all of these sequences will stay in C (and are bounded) after some finite index. So
by iteratively extracting converging subsequences we may choose a sequence (nk)k∈N such
that

lim
k→∞

ank

cnk

= α1 lim
k→∞

dnk

−cnk

= α2 lim
k→∞

bnk

dnk

= α3

where α1, α2, α3 ∈ C.
It turns out that the matrices γnk

∈ Γ(G) converge in C2×2:

lim
k→∞

cnk
= c lim

k→∞
ank

= lim
k→∞

cnk
· ank

cnk

= c · α1

lim
k→∞

dnk
= lim

k→∞
−cnk

· dnk

−cnk

= −c · α2 lim
k→∞

bnk
= lim

k→∞
dnk
· bnk

dnk

= −c · α2 · α3

This contradicts Lemma 4.10, which states that Γ(G) has not any accumulation point.

The next proposition will be a useful tool for us determining convergence. It was adapted
from a proof in [Leh64].

Proposition 4.13. Let G be a Kleinian group with ∞ ∈ Ω(G), (zn)n∈N ⊂ Ĉ a convergent
sequence and (gn)n∈N ⊂ G a sequence of pairwise disjoint Möbius transformations.
Then either

lim
n→∞

|gn∞− gnzn| = 0 (8)

or

z := lim
n→∞

zn ∈ Λ(G) (9)

or both hold.

Proof. Let γn =
(
an bn
cn dn

)
∈ SL(2,C) such that Mγn = gn.

Since ∞ ∈ Λ(G) we know that limn→∞ |cn| =∞ by Lemma 4.12.
Futhermore, one might write

|gn∞− gnzn| =
∣∣∣∣∣ancn − anzn + bn

cnzn + dn

∣∣∣∣∣ =
∣∣∣∣∣ancnzn + andn − ancnzn − cndn

cn(cnzn + dn)

∣∣∣∣∣ = 1
|cn||cnzn + dn|

.

(10)
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1st case: The sequence |cnzn + dn| has no accumulation point at 0 So there is an
N ∈ N, ε ∈ R>0 such that for all n ≥ N we have |cnzn + dn| ≥ ε. With Equation (10)
we yield

lim
n→∞

|gn∞− gnzn| ≤ lim
n→∞

1
ε|cn|

= 0

as limn→∞ |cn| =∞ and Equation (8) is proven.

2nd case: there exists a sequence (kn)n∈N such that limk→∞ |cnk
znk

+ dnk
| = 0 . Then

we are able to conclude Equation (9) as follows:

lim
k→∞
|z − g−1

nk
∞| ≤ lim

k→∞
|z − znk

|+ lim
k→∞
|znk

+ dnk

−cnk

| = 0 + lim
k→∞

∣∣∣∣∣cnk
znk

+ dnk

cnk

∣∣∣∣∣ = 0

Thus z ∈ Λ(G).

Now by dropping the requirement ∞ ∈ Ω(G), we will generalize this proposition using the
metric d on Ĉ, which will lead us to a precious “universal property”:

Lemma 4.14. Let G be a Kleinian group with w ∈ Ω(G) and (zn)n∈N ⊂ Ĉ a convergent
sequence with limit z ∈ Ω(G) and (gn)n∈N ⊂ G a sequence of pairwise disjoint Möbius
transformations. Then

lim
n→∞

d(gnw, gnzn) = 0 (11)

Proof. Conjugate the group G with a distance preserving12 Möbius transformation T :
Ĉ → Ĉ with Tw = ∞. Such a distance preserving Möbius transformation exists: Just
take T = σ ◦ R ◦ σ−1 where R : S2 → S2 simply rotates the Riemann sphere such that
σ−1w is moved to σ−1∞. According to [Nee11] T forms a Möbius transformation.
By Proposition 4.8 Ω(TGT−1) = TΩ(G) holds. According to that ∞ = Tw ∈ Ω(TGT−1)
and by the continuity of T limn→∞ Tzn = Tz ∈ Ω(TGT−1). So we are in the first case of
Proposition 4.13 for the Kleinian group TGT−1 and get

lim
n→∞

|(TgnT−1)∞− (TgnT−1)(Tzn)| = 0 ,

hence
lim
n→∞

|Tgnw − Tgnzn| = 0 .

As pointed out in Definition 4.1, this implies limn→∞ d(Tgnw, Tgnzn) = 0. Since T was
chosen distance preserving, we have proven

lim
n→∞

d(gnw, gnzn) = 0 .

Using this property one can directly show that the orbit of a compact set in Ω(G), i.e. any
closed set that does not overlap Λ(G), touches some other compact set in Ω(G) at most
finitely often.

12i.e. an isometry on (Ĉ, d). If a, b ∈ C, then d(a, b) = d(Ta, Tb).
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Lemma 4.15. Let G be a Kleinian group. For any two compact sets C,D in Ω(G) the
set {g ∈ G | gC ∩D 6= ∅} is finite.
Proof. Assume for contradiction that {g ∈ G | gC ∩D 6= ∅} is infinite. Then there exists
a sequence (gn)n∈N of pairwise distinct elements in G and a sequence of points (zn)n∈N in
C such that dn := gnzn ∈ D. Using the compactness of C and D we can assume without
loss of generality that both zn and dn converge. Let w := limn→∞ zn, d := limn→∞ dn.
Note that z, d ∈ (C ∪D) ⊂ Ω(G). With triangle inequality and Lemma 4.14 one yields

lim
n→∞

d(gnw, d) ≤ lim
n→∞

d(gnw, gnzn) + d(
=dn︷ ︸︸ ︷
gnzn, d) = 0 .

Hence limn→∞ gnw = d, therefore d ∈ Λ(G) which contradicts d ∈ D ⊂ Ω(G).

For further uses we will need two theorems from [Leh64] in their original form. We will
copy them here without their mathmatical derivation.
Theorem 4.16 (Theorem 2A, Ch. Discontinuous Groups from [Leh64]). If G contains,
besides the identity, only elliptic transformations, it is a finite group.
Theorem 4.17 (Theorem 4H, Ch. Discontinuous Groups from [Leh64]). If Λ(G) is not
a single point, it is the closure of the set of fixed points of the hyperbolic or loxodromic
transformations of G.
In particular, Λ(G) is closed and thus is compact in (Ĉ, d).

4.2 Extending the Notation for Groups as Languages
In the last section we have acquired the mathematical background knowledge that is
required to derive an algorithm that generates in convergence the set Λ(G).
We again need a some additional notation from [EPC+92] extending our word-representation
for groups we have introduced in Definition 3.17.
Definition 4.18 (Cayley graph). Let G be a group, and Σ ⊂ G an alphabet of semigroup
generators for G. The Cayley graph Γ(G,Σ) is a directed, labeled graph. The set of
vertices of Γ(G,Σ) is G. There is an edge connecting x ∈ G to y ∈ G with label σ ∈ Σ if
and only if σx = y.

Definition 4.19 (geodesic elements of a group, | · |Σ, GΣ,n). Let G be a group which is
generated by Σ ⊂ G as a semigroup.
Then we will call a word w ∈ Σ∗ geodesic if it has minimal length among all strings
representing the same element as w. Such a geodesic word w can be considered as a
shortest path in Γ(G,Σ) from ι to π(w). For a given g ∈ G we will write

|g|Σ = min{n ∈ N : ∃w ∈ Σn such that π(w) = g}

for the length of its geodesic. Let a, b ∈ Σ∗, then clearly |π(a)π(b)|Σ = |π(ab)|Σ ≤
|π(a)|Σ + |π(b)|Σ holds. The set

GΣ,n := {π(w) ∈ G | w ∈ Σn geodesic} = {g ∈ G | |g|Σ = n}

denotes all elements g ∈ G which can be arrived from ι ∈ G at a minimum distance of
precisely n steps in the Cayley graph Γ(G,Σ). The sets (GΣ,n)n∈N form a partition of G.
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Figure 15: The Cayley graph Γ(G,Σ) for the free group G with the two generators a and
b. Here Σ = {a, b, A,B} where A = a−1, B = b−1. The sets GΣ,0, GΣ,1, GΣ,2, GΣ,3 are
denoted by different colors. For the free group, every word that cannot be simplified by
canceling successive inverses, i.e. it does not contain the substring aA, Aa, bB or Bb, is
geodesic.

4.3 Using Geodesic Group Elements for Convergence
From now on, our main goal is to prove the subsequent theorem. The idea for conjecturing
this theorem came from Proposition 3.20 , which gives a similar statement for hyperbolic
IFS.

Theorem 4.20 (Hausdorff convergence of C ∈ H(Ω(G)) to Λ(G)). Let G be a Kleinian
group with a finite subset Σ ⊂ G as semigroup generators. Furthermore, let Λ(G) 6= ∅
and C ∈ H(Ω(G)), or in other words, a compact set in Ĉ that does not overlap Λ(G).
Then the following convergence holds on H(Ĉ) with respect to the Hausdorff metric h:

lim
n→∞

⋃
g∈GΣ,n

g(C) = Λ(G) (12)

Notation 4.21. Because we do not want to use the complicated term ⋃
g∈GΣ,n

g(C) too
often, we will write

GΣ,nC :=
⋃

g∈GΣ,n

g(C)

instead.

Is the requirement C ∈ H(Ω(G)) instead of C ∈ H(Ĉ) in Theorem 4.20 really necessary?

Example 4.22. Consider the Kleinian group G that is generated by the single hyperbolic
transformation h = (z 7→ 2z). Let Σ = {h−1, h} be its set of semigroup generators. With
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this G = {z 7→ 2kz | k ∈ Z} and Λ(G) = {0,∞}. Thus GΣ,nC = 2nC ∪ 2−nC. Intuitively
it is clear that GΣ,nC for any set C ∈ H(Ω(G)) will converge to Λ(G) on the Riemann
sphere.
What happens for C ∈ H(Ĉ) in general?
If we take C = {0}, then GΣ,nC = {0} for all n ∈ N as every transformation in G fixes 0.
Thus we cannot expect to approach every point of Λ(G) if C ∩ Ω(G) = ∅.
Furthermore, if C ∈ H(Ĉ) covers some open neighborhood of 0, then (GΣ,nC)n∈N inflates
and will cover almost the whole Riemann sphere after a short time. In order to prevent
such a behavior, it is important to require C to be bounded away from Λ(G). Sets in
H(Ω(G)) fulfill this requirement since Λ(G) is closed.

In order to prove Equation (12) we will show that both d(GΣ,nC,Λ(G)) and d(Λ(G), GΣ,nC)
tend to 0 for n→∞.

4.3.1 Leaving the Interior Regions of the Ordinary Set

Lemma 4.23. Let G be a Kleinian group generated by a finite Σ ⊂ G and C ∈ H(Ω(G)).
Then

lim
n→∞

d(GΣ,nC,Λ(G)) = 0 .

Proof. Let ε ∈ R>0. Now we want to show that there is an N ∈ N such that for all n > N
the inequality d(GΣ,nC,Λ(G)) ≤ ε holds, or equivalently, the inclusion GΣ,nC ⊂ Λ(G)+ε is
fulfilled. Set D := Ĉ \ int(Λ(G) + ε). The set D ⊂ Ω(G) is closed and therefore compact in
(Ĉ, d). According to Lemma 4.15 the set {g ∈ G | gC∩D 6= ∅} is finite. With this and the
fact that the sets (GΣ,n)n∈N are pairwise disjoint, the set {n ∈ N | GΣ,nC∩D 6= ∅} is finite.
By choosing N as the maximum of this set, we get for all n > N that GΣ,nC ∩D = ∅
which implies

GΣ,nC ⊂ Ĉ \D ⊂ Λ(G) + ε .

4.3.2 Approximating Every Point of the Limit Set

In order to verify the other convergence, limn→∞ d(Λ(G), GΣ,nC) = 0, we need to show
that GΣ,nC approaches in convergence every point of Λ(G). Using the definition of Λ(G),
it is rather easy to see that GΣ,nC touches every tiny open neighborhood of limit points
from time to time, but it is harder to establish that points of GΣ,nC remain in those
neighborhoods for sufficient large n.
We overcome this problem by showing that we can get and stay arbitrarily close to the
fixed points of infinite-order transformations. This will be good enough, because those
fixed points are dense in Λ(G) by Theorem 4.17.
First, we will prove that a single fixed point of a non-elliptic proper transformation is
approached by the orbit of any ordinary point.

Proposition 4.24. Let G be a Kleinian group generated by a finite Σ ⊂ G, h ∈ G a
parabolic or loxodromic13 transformation with the attractive fixed point Fix+ ∈ Λ(G) and

13or a hyperbolic transformation, which we consider as a special kind of loxodromic transformation.
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z ∈ Ω(G). Then the n-length geodesics of G applied to z approach Fix+ arbitrarily close
for large n, or in other words,

lim
n→∞

d(Fix+, GΣ,n{z}) = 0

Proof. First we will show that limn→∞ h
ng z = Fix+ for every g ∈ G.

h either is parabolic or loxodromic, we will prove limn→∞ h
ng z = Fix+ for each case

separately.

1st case: h is parabolic. We can write h = T ◦ (z 7→ z + a) ◦ T−1 for some a ∈ C 6=0
where T is a transformation that fulfills T (∞) = Fix+. We directly see that iterating
the map (z 7→ z + a) on any point approaches ∞, thus by continuity of T we get

lim
n→∞

hn(g z) = T lim
n→∞

(z 7→ z + a)n(T−1g z) = T∞ = Fix+

2nd case: h is loxodromic. Let Fix− be the repulsive fixed point of h. Then we can
choose any Mobius transformation T with T (∞) = Fix+, T (0) = Fix− and have
h = T ◦ (z 7→ kz) ◦ T−1 for some k ∈ C, |k| > 1.
According to Proposition 4.8 z ∈ Ω(G) implies g z ∈ Ω(G). We are guaranteed that
g z ∈ Ω(G) is different from Fix−, because if g z was some fixed point of h, then it also
was a fixed point for every hn and we could directly conclude limn→∞ h

n(g z) = g z
or g z ∈ Λ(G) (Note that the transformations hn are pairwise different since h is of
infinite order). Hence T−1g z 6= 0, which again proves

lim
n→∞

hn(g z) = T lim
n→∞

(z 7→ kz)n(T−1g z) = T∞ = Fix+

Unfortunately, the convergence limn→∞ h
ng z = Fix+ does not attest limn→∞ d(Fix+, GΣ,n{z}) =

0, because we cannot assume that every GΣ,n contains some power of h. We have to
construct a sequence of transformations with the nth transformation being in GΣ,n for
which this convergence property holds.
We can represent h = π(σ1 . . . σk) with σ1, . . . , σk ∈ Σ by a string over the alphabet Σ.
Let w(t) denote the t-letter string which is obtained by taking the first t letters of the
infinite repeating string σ1 . . . σkσ1 . . . σk . . . , or in mathematical language we set

w : N→ Σ∗

t 7→ w(t) ∈ Σt where w(t)i = σ(i−1 mod k)+1 for i ∈ [t] .

For instance, it turns out that π(w(k)) = h, or more generally, any t = k · n+ l ∈ N with
l ∈ [k − 1] gives us

π(w(k · n+ l)) = hnπ(σ1) . . . π(σl) .
The order of h is infinite because it is parabolic or loxodromic (To see this, consider the
conjugate transformation as above). As a consequence for a fixed l ∈ [k − 1] the sequence
(π(w(k · n+ l)))n∈N = (hnπ(σ1) . . . π(σl))n∈N consists of pairwise different elements, which
implies limn→∞ |π(w(k · n+ l))|Σ =∞ (Again, we use the fact that there is only a finite
number of strings of bounded length). Furthermore (|π(w(t))|Σ)t∈N does not skip any
natural number because

|π(w(t+ 1))|Σ = |π(w(t))π(σ(tmod k)+1)|Σ ≤ |π(w(t))|Σ + 1
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So we have proven that limt→∞ |π(w(t))|Σ = ∞ and, even more, every natural num-
ber occurs in the sequence |π(w(t))|Σ. So we can choose a sequence (tn)n∈N for which
|π(w(tn))|Σ = n holds and take limn→∞ tn =∞ for granted.
For a fixed l ∈ [k − 1], we conclude by the convergence property discussed above:

lim
n→∞

π(w(k · n+ l))z = lim
n→∞

hn(π(σ1) . . . π(σl)z) = Fix+ ,

thus the merged sequence fulfills limt→∞ π(w(t))z = Fix+, which immediately implies
limn→∞ π(w(tn))z = Fix+. As π(w(tn)) ∈ GΣ,n we have finally verified that

lim
n→∞

d(Fix+, GΣ,n{z}) = lim
n→∞

inf{d(Fix+, gz) | g ∈ GΣ,n} = 0

Now we are ready to prove the missing part for our eagerly awaited Theorem 4.20.

Lemma 4.25. Let G be a Kleinian group, with Λ(G) 6= ∅, C ∈ H(Ω(G)). Then

lim
n→∞

d(Λ(G), GΣ,nC) = 0

Proof. Theorem 4.16 guarantees us that there are some parabolic or loxodromic trans-
formations in G. Otherwise G was finite, which caused Λ(G) to become the empty
set.
If G contains some loxodromic transformation, then both of its fixed points are in Λ(G),
thus |Λ(G)| ≥ 2. We will handle this case later. So the case |Λ(G)| = 1 occurs only if
there exists a parabolic transformation in G with a fixed point Fix+. Since this parabolic
transformation is of infinite order it turns out that {Fix+} = Λ(G). By Proposition 4.24
this point is approached in convergence by some z ∈ C, thus

lim
n→∞

d(Λ(G), GΣ,nC) ≤ lim
n→∞

d({Fix+}, GΣ,n{z}) = 0

and we are done.
Now, we are going to prove the harder and more general case |Λ(G)| ≥ 2.
Let ε ∈ R>0. Our job is to establish the existence of an N ∈ N such that for all n > N

d(Λ(G), GΣ,nC) ≤ ε or equivalently, Λ(G) ⊂ GΣ,nC + ε (13)
holds.
Assuming |Λ(G)| ≥ 2 we can apply Theorem 4.17, stating that the fixed points of
loxodromic transformations in G are dense in Λ(G). Without loss of generality, we might
use the attractive fixed points only, because a repulsive fixed point of some loxodromic
transformation h ∈ G becomes an attractive fixed point of h−1 ∈ G (see [MSW02]). The
density of those attractive fixed points enables us to cover Λ(G) with open ε

2 -balls with
the attractive fixed points as their center.
By a well known result of Topology, every open cover of a compact set has a finite subcover.
(for a proof see for example [Bro13]). Thus the compact set Λ(G) (for compactness compare
Theorem 4.17) therefore can be covered as follows

Λ(G) ⊂
K⋃
k=1

B(Fix+
k ,
ε

2) , (14)
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Figure 16: Sketch of the succeeding proof. There is a finite cover of Λ(G) with open ε
2 -balls

having attractive fixed points of loxodromic transformations as their center. Then there is
an N ∈ N such that for every n > N there is at least one element of GΣ,n{z} within every
ball.

where K ∈ N and h1, . . . hK ∈ G is some finite collection of loxodromic transformations
with the attractive fixed points Fix+

1 , . . . ,Fix+
K .

Let z ∈ C ⊂ Ω(G) be some ordinary point in C. Then Proposition 4.24 ensures that
GΣ,n{z} for big n will approach every tiny open neighborhood of the fixed point of a
loxodromic transformation in G and GΣ,n{z} will remain within any of those neighborhoods.
So for the loxodromics hk with k ∈ {1, . . . , K} there exists Nk such that for all n > Nk

d(Fix+
k , GΣ,n{z}) ≤

ε

2 or equivalently, Fix+
k ∈ GΣ,n{z}+ ε

2 (15)

holds. Now we are done by choosing N := max{N1, . . . , NK}, because this gives for all
n > N the inclusion in Equation (13): Let x ∈ Λ(G), then by Section 4.3.2 there is a
k ∈ {1, . . . , K} such that d(x,Fix+

k ) ≤ ε
2 and by Equation (15) there is a y ∈ GΣ,n{z}

with d(Fix+
k , y) ≤ ε

2 . Triangle inequality gives us d(x, y) ≤ d(x,Fix+
k ) + d(Fix+

k , y) ≤ ε,
therefore

x ∈ GΣ,n{z}+ ε ⊂ GΣ,nC + ε .

This was the missing link in order to prove Theorem 4.20

Proof of Theorem 4.20. Λ(G) is non-empty by assumption and it is closed by Theorem 4.17.
Thus Λ(G) ∈ H(Ĉ). On the one hand, under the given assumptions, we were able to show
(see Lemma 4.23 ) limn→∞ d(GΣ,nC,Λ(G)) = 0 and on the other hand (see Lemma 4.25)
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limn→∞ d(Λ(G), GΣ,nC) = 0. If we plug those properties together, then we finally get

h(GΣ,nC,Λ(G)) = lim
n→∞

max{d(GΣ,nC,Λ(G)), d(Λ(G), GΣ,nC)}

= max{0, 0} = 0 .

Thus limn→∞GΣ,nC = Λ(G) in (H(Ĉ), h).

4.4 Utilizing Automatons Accepting the Language of Geodesics
How can we calculate the sets GΣ,nC progressively, which are needed in Theorem 4.20? For
a hyperbolic IFS the analogous was very simple: Here, we were able to compute W n+1C
directly by applying the Hutchinson operator W to the set W nC.
With a more sophisticated method, the progressive computation of the sets GΣ,nC is
possible, provided that the language of geodesics of the groups is accepted by a deterministic
finite automaton.

Definition 4.26 (adapted from Ch. 2. in [Hop07]: deterministic finite automaton,
language of a DFA, regular languages, reversal of words and languages). A five-tuple
A = (Q,Σ, δ, q0, F ) is called a deterministic finite automaton (DFA) where Q is a finite set
of states, Σ a finite alphabet of input symbols, δ : Q×Σ→ Q a transition function, q0 ∈ Q
its start state and F ⊂ Q its set of accepting states. The extended transition function
δ̂ : Q× Σ∗ → Q tells us the state where we land if we successively apply for each letter of
the input string the transition function δ to get from one state to another. It is inductively
defined by δ̂(q, ε) = q and δ̂(q, wa) = δ(δ̂(q, w), a) where q ∈ Q, w ∈ Σ∗, a ∈ Σ. The DFA
A accepts the language

L(A) := {w ∈ Σ∗ | δ̂(q0, w) ∈ F} .

A language L ⊂ Σ∗ is called regular, if there exists a DFA A = (Q,Σ, δ, q0, F ) such that
L = L(A).
The reversal wR of a string w = a1a2 . . . an ∈ Σ is it written backwards, i.e. wR =
anan−1 . . . a1. The reversal LR := {wR ∈ Σ∗ | w ∈ L} of a language L ⊂ Σ∗ consists of all
its reversed strings.

For our method, we will need the following theorem, which we will not prove here.

Theorem 4.27 (Theorem 4.11 from [Hop07]). If L is a regular language, so is LR.

Our algorithm will be based on the fact that for almost every Kleinian group there is an
automaton which accepts the language of the geodesics in G:

Theorem 4.28 (Theorem 3.4.5 from [EPC+92]). Let G be a word hyperbolic group and
let Σ be a set of semigroup generators closed under inversion. The geodesics over Σ form
a regular language, which is part of an automatic structure.

We will not go into the details here to explain the meaning of a hyperbolic group and
under what circumstances a Kleinian group is hyperbolic as it would go beyond the scope
of this thesis. A good reference is [BH99]. For free groups we can use the automaton
depicted in Figure 17.
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Figure 17: A graph representing a 5-state automaton that accepts the reversed geodesics
for a two generator free group. The language of reversed geodesics consists of every word
over {a,A, b, B} that does not contain the substrings aA, Aa, bB and Bb. Each arrow
stands for a transition. Every state is an accepting state.

In the following, let G be a Kleinian group, Σ a set of semigroup generators and A =
(Q,Σ, δ, q0, F ) a DFA that accepts the language of all reversed geodesics of G, i.e.

L(A) = {w ∈ Σ∗ | w geodesic in G}R .

Then partitioning Σ∗ yields to a precious relation. We define for every state q ∈ Q and
every length n ∈ N

Lq,n := {w ∈ Σn | δ̂(q0, w
R) = q} .

With this, we obviously have⋃
q∈F

Lq,n = L(A)R ∩ Σn = {w ∈ Σn | w geodesic in G}R . (16)

Furthermore, we can calculate the languages (Lq,n)q∈Q,n∈N recursively:

Lq,0 = {w ∈ Σ0 | δ̂(q0, w
R) = q} =

{ε} if q = q0

∅ if q 6= q0
(17)

Lq,n+1 = {aw ∈ Σn+1 | a ∈ Σ, w ∈ Σn : δ̂(q0, (aw)R︸ ︷︷ ︸
=wRa

) = q}

= {aw ∈ Σn+1 | a ∈ Σ, w ∈ Σn, p ∈ Q : δ̂(q0, w
R) = p ∧ δ(p, a) = q}

=
⋃

a∈Σ, p∈Q:
δ(p,a)=q

aLp,n (18)
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Figure 18: Screenshots of the implementation. The right pictures shows the sets (Wq,4C)q∈Q
each state in a different color.

Now for q ∈ Q, n ∈ N and C ∈ H(Ĉ) we set,

Wq,nC :=
⋃

w∈Lq,n

π(w)C .

By Equation (16) we immediately see that⋃
q∈F

Wq,nC = GΣ,nC

and, furthermore, by Equations (17) and (18)

Wq,0C =

C if q = q0

∅ if q 6= q0
Wq,n+1C =

⋃
a∈Σ, p∈Q:
δ(p,a)=q

π(aLp,n)C =
⋃

a∈Σ, p∈Q:
δ(p,a)=q

π(a)Wp,nC .

So in combination with Theorem 4.20 we have proven:

Theorem 4.29. Let G be a Kleinian group with Λ(G) 6= ∅, C ∈ H(Ω(G)) and let Σ be
a set of semigroup generators that is closed under inversion. Furthermore, suppose that
there is a DFA A = (Q,Σ, δ, q0, F ) with L(A) = {w ∈ Σ∗ | w geodesic in G}R .
Then the sequence (Wq,nC)q∈Q,n∈N ⊂ H(Ĉ) which is recursively defined by

Wq,0C =

C if q = q0

∅ if q 6= q0
Wq,n+1C =

⋃
a∈Σ, p∈Q:
δ(p,a)=q

π(a)Wp,nC (19)

fulfills
lim
n→∞

⋃
q∈F

Wq,nC = lim
n→∞

GΣ,nC = Λ(G) .

4.4.1 Textured Based Implementation of Automaton based Approach

Suppose we are in the setting of Theorem 4.29. Now let us pour Equation (19) into an
algorithm, which then gives us a sequence of sets whose union converges to the limit set.
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We will represent a set C ∈ H(Ĉ) by a high resolution single-channel texture. The texture
captures a sufficient large rectangular sector of C ⊂ Ĉ. Pixels that represent points in C
will assigned to the color 1 (white) and all other pixels will assigned to 0 (black).

Algorithm 3: A method to calculate and visualize GΣ,nC progressively
1 Initialize two high resolution |Q|-channel textures (CurrentWq)q∈Q and

(PreviousWq)q∈Q of the same size. (Or, alternatively, initialize 2 · |Q| single channel
textures)

2 foreach pixel px, state q ∈ Q do
3 x← complex number in C that corresponds to the pixel px
4 CurrentWq(px)← 1 if q = q0 and x ∈ C, otherwise CurrentWq(px)← 0
5 end
6 while program is running do at most (roughly) 30 times a second
7 PreviousW← CurrentW

/* The rendering procedure for a single frame */
/* For every q ∈ Q set Wq,n+1C to

⋃
a∈Σ, p∈Q:
δ(p,a)=q

π(a)Wp,nC */

8 foreach pixel px do
9 CurrentWq(px) = 0 for every state q ∈ Q

10 x← complex number in C that corresponds to the pixel px
11 foreach state p, q ∈ Q, letter a ∈ Σ with δ(p, a) = q do
12 y ← π(a)−1x /* Apply the corresponding Möbius transformation */
13 py ← pixel(coordinate) that corresponds to the point y
14 CurrentWq(px)← max(CurrentWq(px),PreviousWp(py)) /* Take the

union. */
15 end
16 end
17 Display the overlay of the textures (CurrentWq)q∈F /* Display

⋃
q∈F Wq,n+1C

*/
18 end

We have implemented an example for a free two generator Kleinian group G here: http:
//aaron.montag.info/ba/14using the automaton from Figure 17. The two generators
were chosen using grandma’s receipt from [MSW02] with the parameters ta = 1.91 + 0.05i,
tb = 3.
In this case, the limit set Λ(G) is bounded by 1. Therefore we were able to choose
C := {z ∈ Ĉ | |z| ≥ 1.1} ⊂ Ω(G), which is a compact set of Ĉ. In the example we have
decided to keep visually track of the all the sets that once occurred in GnΣ for some n ∈ N
because the set GnΣ would vanish too fast on the screen for big n. The user might disable
keeping track by regulating the illumination-slider. The states of the automaton accepting
the geodesic language of a free group were encoded by the different color channels of a
single texture14. With the color-slider these states can be made visible.

14Actually there are the four channels red, green, blue and alpha for an automaton with five states. We
kept out the state q0 and poured the initial lightness for C directly in the color channels for qa, qA, qb, qB

which makes no difference for the visualized image.

http://aaron.montag.info/ba/14
http://aaron.montag.info/ba/14
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4.5 Measure-Based Approach to Render Kleinian Groups
We will need a statement about the Lebesgue measure of the limit set here.

Theorem 4.30 (Ahlfors Conjecture, Theorem 5.6.6 in [Mar07]). For any finitely generated
group G, either Λ(G) = Ĉ, or Λ(G) has 2-dimensional Lebesgue measure zero.

According to [Mar07] the missing link for Ahlfors conjecture to hold was finally given in
2004 by Ian Agol with his proof of the Tameness theorem. Since we required Ω(G) 6= ∅ in
our definition of Kleinian groups, the conjecture implies L(Λ(G)) = 0 for every finitely
generated Kleinian group in our sense.
The last algorithm had two big drawbacks. A major disadvantage is that after some time
the displayed set appears to vanish. This is a consequence of the nature of the limit set
itself, which has according to Ahlfors conjecture Lebesgue measure 0.
Another big drawback lies in the fact that we had to choose some set C ∈ H(Ω(G)) instead
of any compact set of H(Ĉ). On the one hand, some a priori knowledge of the limit set
Λ(G) is required to choose such a set. On the other hand the user cannot simply change
parameters of the group at running time, because by doing so he might move Λ(G) over
the current displayed set and “messing up” everything.
Similar as in Section 3.3, we can use measures instead of sets. Likewise these measures will
be encoded as textures. It turns out that this gives the opportunity to drop the disturbing
property of choosing an initial set C that does not overlap Λ(G).
One option to do so is simulating the random IFS algorithm: Let G be a Kleinian group
finitely generated by Σ ⊂ G as semigroup, where each σ ∈ Σ is assigned a probability
pσ ∈ (0, 1] such that ∑σ∈Σ pσ = 1. The random IFS algorithm outputs the trace of a
single point that is iteratively transformed by some random element σ ∈ Σ which is chosen
for each iteration independently with probability pσ. Similar as in Definition 3.15 this
process can be simulated by iterating the Markov operator that takes some probability
measure µ ∈M1(Ĉ) and maps it to the new measure ∑N

σ∈Σ pσ · σµ. The results of some
test implementation 15 were not satisfying as in several Kleinian groups there are some
regions of the limit sets that have some regions that are very unlikely to be visited by the
random IFS algorithm and therefore are assigned an almost invisible small probability.
Using measures we can attain much better images of the limit set if we use our results
developed for the set based approach (see algorithm 3) by simply replacing sets with
measures and the union of sets with the sum of measures. Again, we assume that Σ is
a finite set of semigroup generators for the Kleinian group G and A = (Q,Σ, δ, q0, F ) is
a DFA accepting the language of all reversed geodesics of G. We define the languages
(Lq,n)q∈Q,n∈N as in Section 4.4. Now for a measure µ ∈M(Ĉ) we set

Mq,nµ :=
∑

w∈Lq,n

π(w)µ .

Analogously as in Theorem 4.29, Mq,nµ can be computed recursively by

Mq,0µ =

µ if q = q0

0 if q 6= q0
Mq,n+1µ =

∑
a∈Σ, p∈Q:
δ(p,a)=q

π(a)Mp,nµ .

15see http://aaron.montag.info/ba/15.

http://aaron.montag.info/ba/15
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and it fulfills ∑
q∈F

Mq,nµ =
∑

g∈GΣ,n

gµ =: GΣ,nµ .

How does GΣ,nµ look like for big n ∈ N if µ is an arbitrary measure? We cannot expect
GΣ,nµ to convergence in some proper sense since GΣ,nµ(Ĉ) = µ(Ĉ) · |GΣ,n|, which tends to
infinity for µ(Ĉ) 6= 0 and growing sets GΣ,n. Can we expect that its support will approach
Λ(G)? Not in general: A counterexample for the group that is generated by a single
hyperbolic Möbius transformation can be given by choosing the Dirac measure µ = δz
where z ∈ Λ(G) is one of the two fixed points of the Möbius transformation. Then the
support of the measure GΣ,nδz = 2nδz does not attain the other fixed point.
Under suitable assumptions on the measure a positive answer is given by the following
theorem:

Theorem 4.31. Let µ ∈M(Ĉ) be a measure that is bounded by a multiple of the Lebesgue
measure, i.e. there is a constant c ∈ R>0 such that for every Borel set B

µ(B) ≤ c · L(B)

holds.
Then we have for every compact set C ∈ H(Ω(G))

lim
n→∞

GΣ,nµ(C) = 0

and for every open set O ⊂ C with O ∩ Λ(G) 6= ∅

lim inf
n→∞

GΣ,nµ(O) ≥ µ(Ĉ)
2 .

Proof. First let us prove limn→∞GΣ,nµ(C) = 0. Using the definition of transformed
measures and characteristic functions one may write

GΣ,nµ(C) =
∑

g∈GΣ,n

µ(g−1C) =
∫
Ĉ

∑
g∈GΣ,n

χg−1C(z) dµ(z) (20)

The set {g ∈ G | gC ∩ C 6= ∅} has a finite cardinality K according to Lemma 4.15 .
Since Möbius transformations are bijective we may conclude that for every g−1 ∈ GΣ,n the
set {h ∈ GΣ,n | h−1C ∩ g−1C 6= ∅} has a cardinality less or equal to K. Hence the sum∑
g∈GΣ,n

χg−1C(z) can be bounded above by K. Furthermore, this sum has the support
GΣ−1,nC. With this we can bound Equation (20) from above to

GΣ,nµ(C) ≤ Kµ(GΣ−1,nC) ≤ KcL(GΣ−1,nC) (21)

By Lemma 4.23 limn→∞ d(GΣ−1,nC,Λ(G)) = 0 which implies that there is a zero-sequence
(εn)n∈N such that GΣ−1,nC ⊂ Λ(G) + εn. Since Λ(G) is closed, Λ(G) = ⋂∞

n=1(Λ(G) + εn)
holds. Measures are continuous from above, therefore limn→∞ L(Λ(G) + εn) = L(Λ(G)).
By taking the limit of Equation (21) and Ahlfors conjecture we finally yield:

lim
n→∞

GΣ,nµ(C) ≤ Kc lim
n→∞

L(GΣ−1,nC) ≤ Kc lim
n→∞

L(Λ(G) + εn) = KcL(Λ(G)) = 0 ,
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hence limn→∞GΣ,nµ(C) = 0.

Now let O ⊂ Ĉ be an open set that has a non-empty intersection with Λ(G). In this
setting Λ(G) 6= ∅. As discussed in the proof of Lemma 4.25 Λ(G) is either a single
point of a parabolic transformation or it is the closure of the fixed points of loxodromic
transformations. In any case, there is a parabolic or loxodromic transformation h having a
attractive fixed point Fix+ ∈ O. Since O is open, there is a neighborhood B(Fix+, ε) ⊂ O.
With little afford Proposition 4.24 can be generalized to the property that there exists is a
sequence of transformations (gn ∈ GΣ,n)n∈N which uniformly attracts any compact set in
Ω(G) to Fix+. We will not give an explicit proof here as it is almost a technical adaption
of Proposition 4.24.
As shown above we have the convergence

lim
ε→0

µ(Λ(G) + ε) ≤ lim
ε→0

cL(Λ(G) + ε) = 0

So, there is a δ > 0 such that µ(Λ(G) + δ) ≤ µ(Ĉ)
2 . The compact set C := Ĉ \ int(Λ(G) + δ)

fulfills the inequality µ(C) ≥ µ(Ĉ)
2 .

By the generalized convergence property, there is an N such that gnC ⊂ B(Fix+, ε) for
every n > N . For those n we can generously estimate from below

GΣ,nµ(O) ≥ GΣ,nµ(B(Fix+, ε)) ≥ µ(g−1
n B(Fix+, ε)) ≥ µ(C) ≥ µ(Ĉ)

2 .

This finished our proof.

Theorem 4.31 let us expect good results if we calculate GΣ,nµ where µ is some uniform
distribution on the region covered by the screen: Then µ vanishes exactly at those regions
that are not covered by Λ(G).

4.5.1 Implementation

The computation of GΣ,nµ for a measure µ is analogous to the computation of GΣ,nC for
a set C in algorithm 3. The densities of the occurring measures Mq,nµ = ∑

w∈Lq,n
π(w)µ

will be encoded in textures as described in Section 3.3.1.
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Figure 19: Screenshots of the measure-based implementation. The right picture again
visualized the internal states.

With this we yield the following algorithm:

Algorithm 4: A method to calculate and visualize GΣ,nµ progressively
1 Initialize two high resolution |Q|-channel textures (CurrentDq)q∈Q and

(PreviousDq)q∈Q of the same size. (Or, alternatively, initialize 2 · |Q| single channel
textures)

2 foreach pixel px, state q ∈ Q do
3 CurrentDq(px)← 1 if q = q0, otherwise CurrentDq(px)← 0
4 end
5 while program is running do at most (roughly) 30 times a second
6 PreviousD← CurrentD

/* The rendering procedure for a single frame */
/* For every q ∈ Q set Mq,n+1µ to

∑
a∈Σ, p∈Q:
δ(p,a)=q

π(a)Mp,nµ */

7 foreach pixel px do
8 CurrentDq(px) = 0 for every state q ∈ Q
9 x← complex number in C that corresponds to the pixel px

10 foreach state p, q ∈ Q, letter a ∈ Σ with δ(p, a) = q do
11 y ← π(a)−1x /* Apply the corresponding Möbius transformation */
12 py ← pixel(coordinate) that corresponds to the point y
13 CurrentDq(px)← CurrentDq(px) + | detDπ(a)−1(x)| · PreviousDp(py)
14 end
15 end
16 Display the overlay of the textures (CurrentDq)q∈F /* Display

∑
q∈F Mq,n+1µ */

17 end

An example implementation can be found at: http://aaron.montag.info/ba/16. Here
the user can change parameters at running time.

http://aaron.montag.info/ba/16
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4.6 Conclusion
The results are better than the images generated by algorithm 3. Nevertheless there
are still some blurred regions caused by the magnifications of the texture with limited
resolution. Furthermore it is necessary to cover the whole limit set by the screen.
But if one is willing to accept these drawbacks, this rendering method provides an
environment for visualizing the limit sets effectively. In particular, the effects of parameter
change become visible instantaneously.
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